

اثر عصاره‌ی هیدروالکلی برگ گیاه غافت (Agrimonia eupatoria L.) بر سمیت کبدی در موش‌های صحرایی نر القا شده با تتراکلرید کربن

مریم خزانی^۱ ، دکتر ناصر میرازی^۲

نویسنده‌ی مسئول: گروه زیست شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان maryam.khazaei133@yahoo.com

دربافت: ۹۶/۱/۲۸ پذیرش: ۹۶/۴/۱۱

چکیده

زمینه و هدف: تتراکلرید کربن ماده‌ای سمی است که باعث ایجاد سمیت کبدی می‌گردد. هدف از این مطالعه، بررسی اثر عصاره‌ی هیدروالکلی برگ گیاه غافت بر سمیت کبدی در موش‌های القا شده با تتراکلرید کربن بود.

روش بررسی: در این مطالعه‌ی تجربی، ۴۲ سر موش صحرایی نر به ۶ گروه تصادفی تقسیم شدند. گروه کنترل و شم به ترتیب میزان ۲ میلی‌لیتر بر کیلوگرم نرم‌مال سالین و روغن زیتون به صورت درون صفاقی و گروه دریافت‌کننده تتراکلرید کربن میزان ۲ میلی‌لیتر بر کیلوگرم تتراکلرید کربن با نسبت ۱:۱ با روغن زیتون به صورت تک‌دوز و درون صفاقی دریافت کردند. گروه‌های تیمار ۱، ۲ و ۳ توسط تتراکلرید کربن القا شده و دو ساعت بعد توسط عصاره‌ی گیاه غافت به ترتیب با دوزهای ۲۰۰، ۴۰۰ و ۱۰۰ میلی‌گرم بر کیلوگرم به مدت ۹۶ ساعت و به صورت درون صفاقی تیمار شدند. سپس نمونه‌های خونی مستقیماً از قلب جمع‌آوری شده و سطح سرمی آنزیم‌های کبدی اندازه‌گیری گردید. مطالعات میکروسکوپی بافت کبد نیز انجام شد. داده‌ها با استفاده از آزمون‌های آماری آنوفا و توکی ارزیابی شدند.

یافته‌ها: نتایج این مطالعه افزایش معنادار سطح سرمی آنزیم‌های کبدی در گروه دریافت‌کننده تتراکلرید کربن نسبت به گروه کنترل و درمان با عصاره‌ی غافت و کاهش معنادار سطح سرمی آنزیم‌های کبدی در گروه‌های تیمار نسبت به گروه دریافت‌کننده تتراکلرید کربن را نشان داد ($P < 0.001$). همچنین مطالعات بافتی نکروز و التهاب بافت کبد در گروه دریافت‌کننده تتراکلرید کربن و کاهش سلول‌های نکروزی و التهاب را در گروه‌های تیمار نشان داد.

نتیجه‌گیری: تتراکلرید کربن بافت کبد را ملتهب و دچار نکروز می‌کند. عصاره‌ی گیاه غافت با کاهش میزان آنزیم‌های کبدی توانست اثرات سمی تتراکلرید کربن را در کبد کاهش دهد.

واژگان کلیدی: غافت، سمیت کبدی، تتراکلرید کربن، آنزیم‌های کبدی، موش صحرایی

مقدمه

خون، ذخیره‌ی قند به صورت گلیکورژن و تنظیم سوخت‌وساز قند و چربی از مهم‌ترین وظایف آن در بدن می‌باشد. همچنین نقش کبد در جذب چربی و دفاع در برابر

کبد یکی از ارگان‌های حیاتی بدن است که سرمزدایی از داروها، دفع محصولات زائد ناشی از تخریب و نوسازی گلوبول‌های قرمز خون به صورت صفراء، تولید عوامل انعقادی

۱- کارشناس ارشد فیزیولوژی جانوری، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

۲- دکترای تحصصی فیزیولوژی، دانشیار گروه زیست شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان

مختلف بدن شده و علاوه بر آن باعث ایجاد عوارض دیگری از جمله آسیب کبدی و کلیوی، سردرد، افسردگی، ضعف روانی و گیجی می‌گردد (۶). تتراکلرید کربن بعد از ورود به بدن، توسط سیتوکروم P450 متابولیزه شده و به رادیکال‌های آزاد تری کلرومتیل (CCl_3) و پراکسی‌تری کلرومتیل ($OCOCl_3$) تبدیل می‌شود. اولین و مهمترین ارگان هدف برای این ماده کبد می‌باشد. رادیکال‌های آزاد تولید شده باعث پراکسیداسیون لیپیدهای غشا و ایجاد سمیت کبدی می‌گردد (۷). رادیکال تری کلرومتیل با انواع مولکول‌های زیستی مهم از قبیل آمینواسیدها، نوکلئوتیدها، اسیدهای چرب، پروتئین‌ها و لیپیدها واکنش می‌دهد. رادیکال تری کلرومتیل در حضور اکسیژن به رادیکال پراکسی تری کلرومتیل تبدیل می‌شود. این رادیکال فعال‌تر بوده و از اسیدهای چرب غیراشباع هیدروژن دریافت می‌کند و به این ترتیب فرآیند پراکسیداسیون لیپیدی را آغاز می‌نماید. پراکسیداسیون لیپیدی در غشای کبد باعث تخریب غشا می‌گردد. اختلال در یکپارچگی غشای پلاسمایی سلول‌های کبدی باعث می‌شود، آنژیم‌های کبدی که به طور طبیعی در داخل سیتوزول قرار دارند، وارد جریان خون شده و میزان این آنژیم‌ها در خون افزایش یابد که شاخصی برای آسیب کبدی می‌باشد (۸). مطالعات نشان می‌دهند رادیکال تری کلرومتیل همچنین می‌تواند انواعی از رادیکال‌های آزاد و اکسیژن واکنش‌پذیر در سایر بافت‌های غیرکبدی از جمله کلیه، قلب، شش، بیضه، مغز و خون تولید کند و با ایجاد استرس اکسیداتیو باعث ایجاد آسیب در آن‌ها گردد (۹).

تحقیقات گذشته نشان داده اند که منابع غنی از ترکیبات آنتی‌اکسیدانی با خنثی کردن رادیکال‌های آزاد و کاهش استرس اکسیداتیو ایجاد شده توسط آن‌ها، می‌توانند سمیت کبدی ناشی از تتراکلرید کربن را کاهش دهند. یکی از این منابع آنتی‌اکسیدانی گیاهان دارویی می‌باشند (۱۰). گیاهان دارویی از زمان‌های قدیم در طب سنتی، جهت درمان و یا کنترل اغلب بیماری‌ها مورد استفاده بوده است. با توجه

میکروب‌ها و سموم جذب شده از راه مواد غذایی را تباید نادیده گرفت (۱). هرگونه اختلال در عملکرد کبد باعث ایجاد مجموعه‌ای از اختلالات می‌شود که می‌تواند صدمات جبران ناپذیری را به این عضو وارد نماید. عواملی مانند استرس اکسیداتیو، رادیکال‌های آزاد، الكل سفید، مواد شیمیایی، ویروس‌ها و داروها می‌توانند باعث تخریب بافت کبدی شوند (۲). چندین تست بیوشیمیایی در تشخیص بیماری‌های کبدی استفاده می‌شود. مهم‌ترین این تست‌ها تعیین میزان فعالیت آنژیم‌های آمینوترانسферاز، شامل آلانین آمینوترانسферاز (ALT) و آسپارتات آمینوترانسферاز (AST) می‌باشد. این آنژیم‌ها به طور معمول توسط سلول‌های کبدی به مقدار معینی تولید می‌گردد. زمانی که کبد چهار آسیب می‌شود سلول‌های کبدی ترشح آنژیم‌های فوق را افزایش داده و موجب بالا رفتن سطح پلاسمایی آن‌ها می‌گردد که بالا رفتن سطح این آنژیم‌ها در خون نشانه‌ی آسیب کبدی است. آکالالین فسفاتاز (ALP) نیز در بیماری‌های کبدی مرتبط با ترشح و دفع صفراء افزایش می‌یابد (۳). حلال‌های آلی به صورت گستردگی در صنایع مختلف کاربرد دارند. این ترکیبات از راههای مختلف وارد بدن شده و با توجه به قدرت حلایت آن‌ها در چربی از سد خونی- مغزی عبور نموده و موجب تضعیف سیستم اعصاب مرکزی می‌شوند. از طرف دیگر این ترکیبات در بدن متابولیزه شده و محصولاتی مانند رادیکال‌های آزاد و گونه‌های فعال اکسیژن تولید می‌کنند که موجب آسیب در ارگان‌های مختلف بدن می‌شوند (۴). این ترکیبات در ایجاد بیماری‌های کبدی نقش مهمی دارند. فیروز کبدی معمولاً در اثر انواع مختلف بیماری‌های مزمن کبدی ایجاد می‌شود. پیامد احتمالی فیروز کبدی، سیروز کبد و کارسینومای سلول‌های کبدی می‌باشد (۵). تتراکلرید کربن یکی از این حلال‌های آلی می‌باشد که به صورت گستردگی در صنایع مختلف، مواد شوینده و پاک کننده‌ها به کار می‌رود. این ماده سمی بوده و موجب اختلال در سیستم اعصاب مرکزی، اختلال حواس و آسیب ارگان‌های

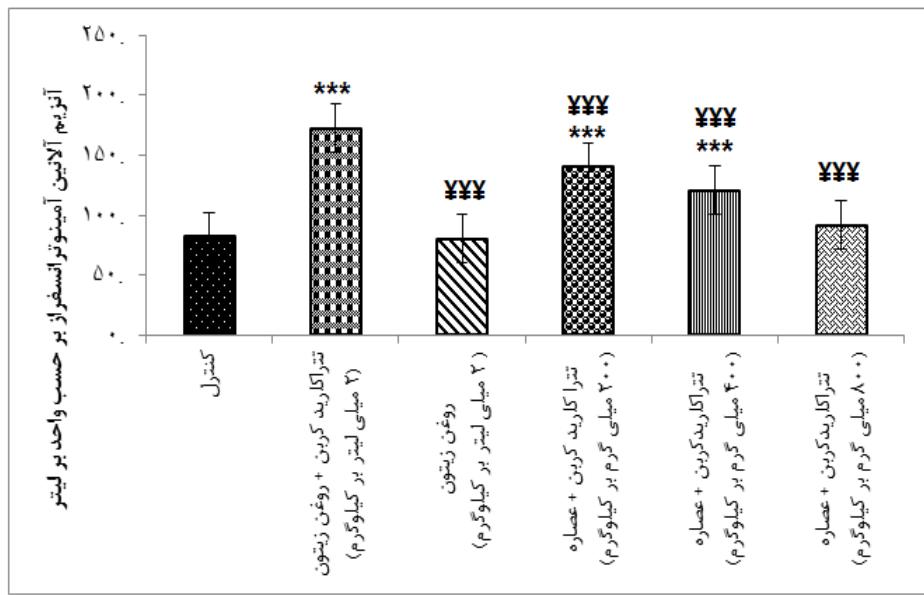
اینکه تاکنون اثر محافظتی این گیاه بر آسیب کبدی ناشی از تترالکلرید کربن انجام نشده است، در این مطالعه برآن شدیم تا نقش محافظتی این گیاه را در به تاخیرانداختن سمیت کبدی و جلوگیری از پیشرفت بیماری مورد بررسی و ارزیابی قرار دهیم.

روش بررسی

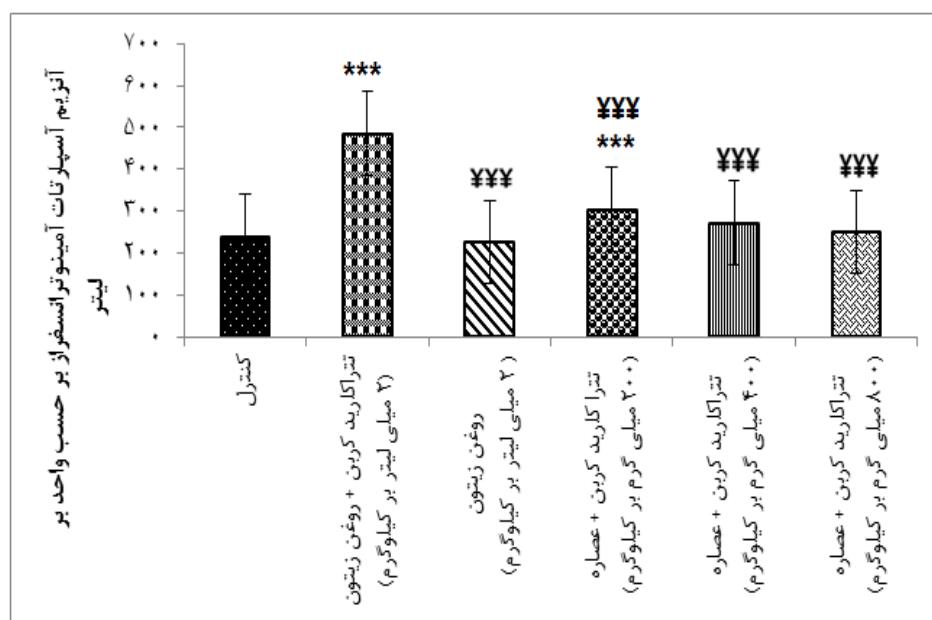
انتخاب و گروه بندی حیوانات: در این مطالعه‌ی تجربی، ۴۲ سر موش صحرایی نر بالغ از نژاد ویستار، در محدوده وزنی ۲۰۰ تا ۲۵۰ گرم از دانشگاه علوم پزشکی همدان خریداری شد و به مدت ۱۰ روز در حیوان خانه‌ی دانشکده علوم پایه دانشگاه بوعلی سینا همدان در دمای استاندارد ۲۰ تا ۲۲ درجه‌ی سانتی‌گراد، همراه با آب و غذای کافی و در دسترس و تحت شرایط ۱۲ ساعت روشنایی و ۱۲ ساعت تاریکی نگهداری شدند تا به شرایط محیط عادت نمایند. در این مطالعه کلیه‌ی موارد اخلاقی مورد تایید کمیته‌ی اخلاق پزشکی کار بر روی حیوانات آزمایشگاهی دانشگاه بوعلی سینا که با کد ۱۵۲-۵۴ تصویب رسیده است، رعایت شد. حیوانات به‌طور تصادفی در ۶ گروه ۷ سری شامل گروه کنترل (دريافت کننده نرمال سالين به ميزان ۲ ميلى ليتير بر كيلوگرم)، گروه دريافت کننده تترالکلرید کربن (دريافت کننده تترالکلرید کربن به ميزان ۲ ميلى ليتير بر كيلوگرم با نسبت ۱:۱ با روغن زيتون به‌صورت تک دوز)، گروه شم (دريافت کننده روغن زيتون به ميزان ۲ ميلى ليتير بر كيلوگرم)، گروه‌های تیمار ۱ و ۲ و ۳ (دو ساعت بعد از دريافت تترالکلرید کربن به ميزان ۲ ميلى ليتير بر كيلوگرم با نسبت ۱:۱ با روغن زيتون به‌صورت تک دوز)، گروه شم (دريافت کننده تک دوز، عصاره‌ی گیاه غافت را به ترتیب با دوزهای متفاوت ۲۰۰، ۴۰۰ و ۸۰۰ ميلى گرم بر كيلوگرم دريافت کردن) تقسیم شدند. دو ساعت پس از دريافت تترالکلرید کربن، تجویز عصاره به‌مدت ۹۶ ساعت انجام گرفت. تمام آزمایشات در طول روز و در دمای استاندارد ۲۰ تا ۲۲ درجه سانتی‌گراد و

به عوارض و اثرات سوء داروهای شیمیایی، امروزه گرایش به مصرف گیاهان دارویی در سطح جهان افزایش چشمگیری داشته است (۱۱). یکی از این گیاهان دارویی که از سالیان دور به‌طور گسترده در درمان بیماری‌ها به‌کار می‌رفته است، گیاه غافت با نام علمی *Agrimonia eupatoria* L. گونه *Agrimonia eupatoria* L. (Rosaceae) است که با نام *agrimony* شناخته شده است. این گیاه یک گیاه چندساله می‌باشد و به‌طور گسترده در سراسر اروپا، آسیا، آفریقا و امریکای شمالی یافت می‌شود (۱۲). این گیاه در ایران در مناطق تالش، آذربایجان، کردستان، مازندران، رشت، خراسان، لرستان، قزوین، اردبیل، شیرواز، دشت مغان، تهران و ارومیه یافت می‌شود (۱۳). غافت یک گیاه پایا، علفی و افراشته بوده و دارای ساقه‌ی راست می‌باشد که با کرک‌های گسترده و متراکم پوشیده شده است. شاخه‌های آن طویل، برگ‌دار و متنه‌ی به گل آذین سنبه می‌باشد. برگ‌های این گیاه به صورت پرمانند و دندانه‌دار با سطح زیرین محملی بوده و گل‌های آن زرد رنگ هستند. میوه‌ی غافت به صورت مخروطی شکل کوچک می‌باشد (۱۴). غافت دارای ترکیباتی از جمله پلی فنول‌ها، فلاونوئیدهایی مانند پروسیانیدین، کوئرستین، کاتچین و کامفرون، تانن‌ها و تری ترپنئیدهای می‌باشد (۱۵). از خواص درمانی غافت می‌توان به خواص آنتی‌اکسیدانی، ضد التهابی، ضد دیابتی، ضد چاقی، ضد سرطانی، ضد میکروبی و محافظت کننده‌ی سیستم عصبی، کبد و کلیه اشاره کرد (۱۶). گیاه غافت از دیرباز برای آرام بخشی، کاهش استرس و درمان یرقان استفاده شده است و امروزه اثرات مفید آن در درمان هپاتیت، مشکلات تنفسی و ضد خونریزی بودن آن به اثبات رسیده است. این گیاه همچنین در درمان بیماری‌های گوارشی، دستگاه ادراری و صفرایی به‌کار می‌رود (۱۷). بنابر مطالعه ذکر شده و از آنجایی که گیاه غافت یک منبع غنی از ترکیبات مفید بوده و دارای اثرات درمانی متعددی می‌باشد و نظر به

Auto analyzer Selectra- XL) - هلند) اندازه‌گیری شد. با انجام لپاراسکوپی نمونه‌های بافت کبد تهیه و پس از شستشو به وسیله سرم فیزیولوژی بلا فاصله در فرمالین ۱۰ درصد جهت فیکس شدن و تهیه مقاطع بافتی قرار داده شد.


تحلیل آماری: داده‌های جمع‌آوری شده با استفاده از نرم‌افزار آماری SPSS تجزیه و تحلیل شدند. از آزمون آماری کولموگروف- اسمیرنوف، آزمون آنوا (آنالیز واریانس یک طرفه) و تست تعقیبی توکی برای تجزیه و تحلیل داده‌ها استفاده شد.

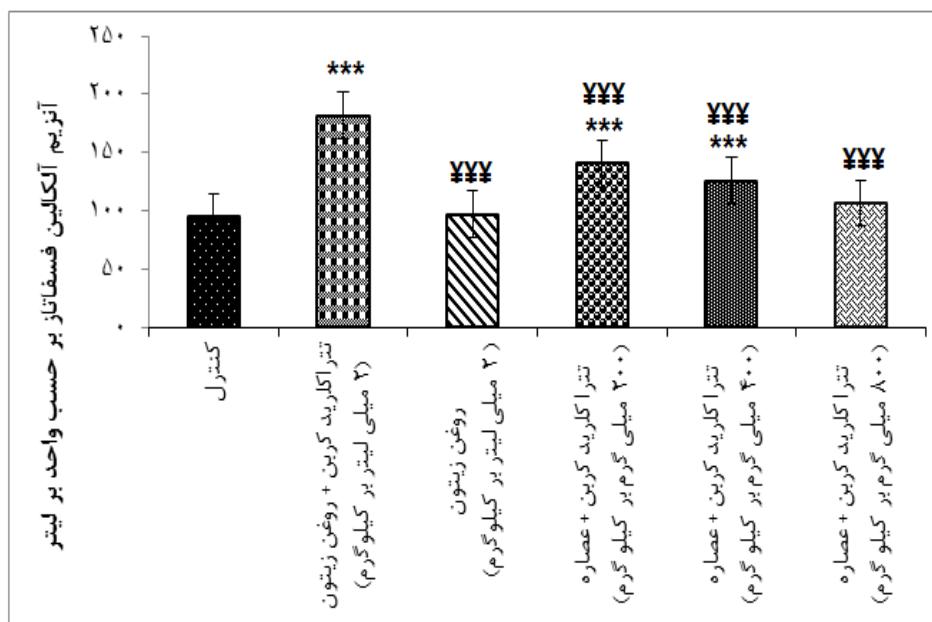
یافته‌ها


نتایج حاصل از مطالعات نشان داد که تراکلریدکرین باعث ایجاد سمیت کبدی شدید در موش‌ها گردید و با افزایش معنادار سطوح سرمی آنزیم‌های کبدی AST، ALT و ALP در مقایسه با گروه کنترل و گروه شم همراه بود (P<۰/۰۰۱). تجویز عصاره‌ی هیدرولکلی برگ گیاه غافت در هر سه دوز ۲۰۰، ۴۰۰ و ۸۰۰ میلی‌گرم بر کیلوگرم باعث کاهش معنی‌دار میزان آنزیم‌های کبدی در مقایسه با گروه دریافت‌کننده CCl₄ شد. بر اساس نتایج این مطالعه تراکلریدکرین باعث افزایش معنادار سطح سرمی آنزیم آلانین آمینو‌ترانس‌فراز (ALT) در گروه دریافت‌کننده CCl₄ در مقایسه با گروه کنترل و شم گردید (P<۰/۰۰۱)، در حالی که درمان با عصاره‌ی هیدرولکلی غافت در هر سه دوز ۲۰۰، ۴۰۰ و ۸۰۰ میلی‌گرم بر کیلوگرم باعث کاهش معنادار میزان آنزیم ALT در مقایسه با گروه دریافت‌کننده CCl₄ شد (P<۰/۰۰۱). گروه شم و گروه تیمار سه (دریافت‌کننده عصاره با دوز ۸۰۰ میلی‌گرم بر کیلوگرم) اثر معناداری را نسبت به گروه کنترل نشان ندادند (نمودار ۱).

تمام تزریقات به صورت درون صفاقی انجام شد (۱۸ و ۱۱). عصاره‌گیری گیاه غافت: گیاه غافت با کد هرباریومی ۲۲۲ در گروه فارماکوگنوزی دانشکده‌ی داروسازی دانشگاه علوم پزشکی همدان ثبت گردیده است. برگ‌های این گیاه از باع گیاهان دارویی سازمان جهاد کشاورزی همدان جمع‌آوری شد و توسط کارشناس گیاه شناس آن سازمان شناسایی گردید. سپس فرآیند عصاره‌گیری بر اساس منابع قبلی انجام شد (۱۹).

روش عصاره گیری: جهت آماده سازی عصاره‌ها، ابتدا برگ‌های گیاه در سایه خشک و توسط آسیاب برقی پودر گردید. برای تهیه عصاره هیدرولکلی، پودر گیاه در ۵۰۰ میلی‌لیتر اتانول ۸۰ درصد قرار گرفت و به منظور ممانعت از اثرات دمای محیط و اختلالات متاثر از آن، به مدت یک هفته داخل یخچال نگهداری شد. سپس توسط کاغذ صافی و قیف شیشه‌ای صاف گردید و محلول حاصل در دستگاه روتاری با دمای ۵۵ درجه‌ی سانتی‌گراد و با دور متوسط ۶۰ دور در دقیقه به منظور جداسازی حلال از عصاره قرار گرفت. پس از خروج حلال مایع غلیظ نیمه جامد به دست آمده داخل پلیت شیشه‌ای ریخته شده و به مدت ۴۸ ساعت زیر هود قرار داده شد. بعد از آنکه عصاره کاملاً تغليظ شد، جهت جلوگیری از ورود هوا در پلیت‌ها بسته شد و تا زمان مصرف در فریزر ۲۰ درجه‌ی سانتی‌گراد نگهداری گردید. انجام آزمایش: عصاره‌ی گیاه غافت در دوزهای مناسب تهیه شد و آزمایشات انجام گرفت. بعد از اتمام آزمایشات در گروه‌های مورد مطالعه، خون‌گیری مستقیم از قلب انجام شد. سپس نمونه‌های خون تهیه شده جهت تهیه سرم با دور ۴۰۰۰ در دقیقه و به مدت ۱۰ دقیقه سانتریفیوژ گردیدند. سپس سطح آنزیم‌های کبدی با روش رنگ سنجی آنزیمی و با استفاده از دستگاه اتوآنالیز

نمودار ۱: مقایسه داده‌های حاصل از سنجش آنزیم آمینوترانسферاز در گروه‌های مورد آزمون. داده‌ها به صورت $Maen \pm SEM$ ارائه شده‌اند. * معنی‌داری نسبت به گروه کنترل. ** بیانگر نسبت به گروه تتراکلریدکربن. (***: $P < 0.001$) (****: $P < 0.0001$)


نمودار ۲: مقایسه داده‌های حاصل از سنجش آنزیم آسپارتات آمینوترانسферاز در گروه‌های مورد آزمون. داده‌ها به صورت $Maen \pm SEM$ ارائه شده‌اند. * معنی‌داری نسبت به گروه کنترل. ** معنی‌داری نسبت به گروه تتراکلریدکربن. (***: $P < 0.001$) (****: $P < 0.0001$)

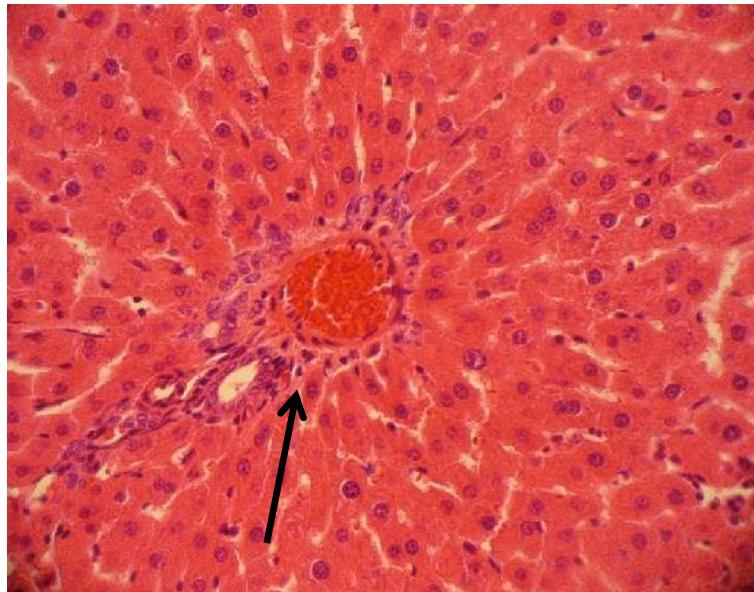
تتراکلریدکربن باعث افزایش معنادار سطح سرمی آنزیم CCl_4 در مقایسه با گروه کنترل و شم گردید ($P < 0.001$), در حالی که درمان با عصاره هیدروالکلی غافت در هر سه دوز

تتراکلریدکربن باعث افزایش معنادار سطح سرمی آنزیم آسپارتات آمینوترانسферاز (AST) در گروه دریافت‌کننده‌ی

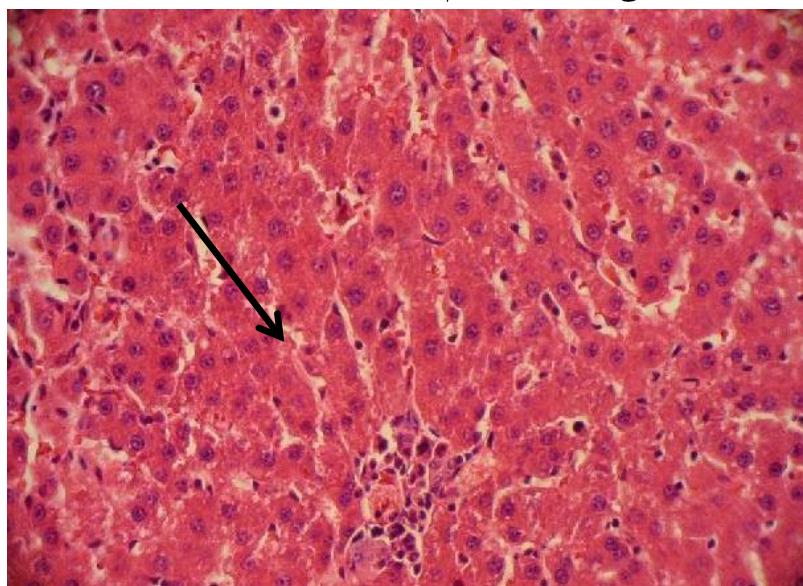
گروه کترل و شم گردید ($P<0.001$), در حالی که درمان با عصاره هیدروالکلی غافت در هر سه دوز ۲۰۰، ۴۰۰ و ۸۰۰ میلی گرم بر کیلو گرم باعث کاهش معنادار میزان آنزیم ALP در مقایسه با گروه دریافت کننده CCl_4 شد ($P<0.001$). گروه شم و گروه تیمار سه (دریافت کننده عصاره با دوز ۸۰۰ میلی گرم بر کیلو گرم) اثر معناداری را نسبت به گروه کترل نشان ندادند (نمودار ۳).

۲۰۰ و ۴۰۰ میلی گرم بر کیلو گرم باعث کاهش معنادار میزان آنزیم AST در مقایسه با گروه دریافت کننده CCl_4 شد ($P<0.001$). گروه شم، گروه تیمار دو (دریافت کننده عصاره با دوز ۴۰۰ میلی گرم بر کیلو گرم) و تیمار سه (دریافت کننده عصاره با دوز ۸۰۰ میلی گرم بر کیلو گرم) اثر معناداری را نسبت به گروه کترل نشان ندادند (نمودار ۲). تراکلریدکرین همچنین باعث افزایش معنادار سطح سرمی آنزیم آکالین فسفاتاز (ALP) در گروه دریافت کننده CCl_4 در مقایسه با

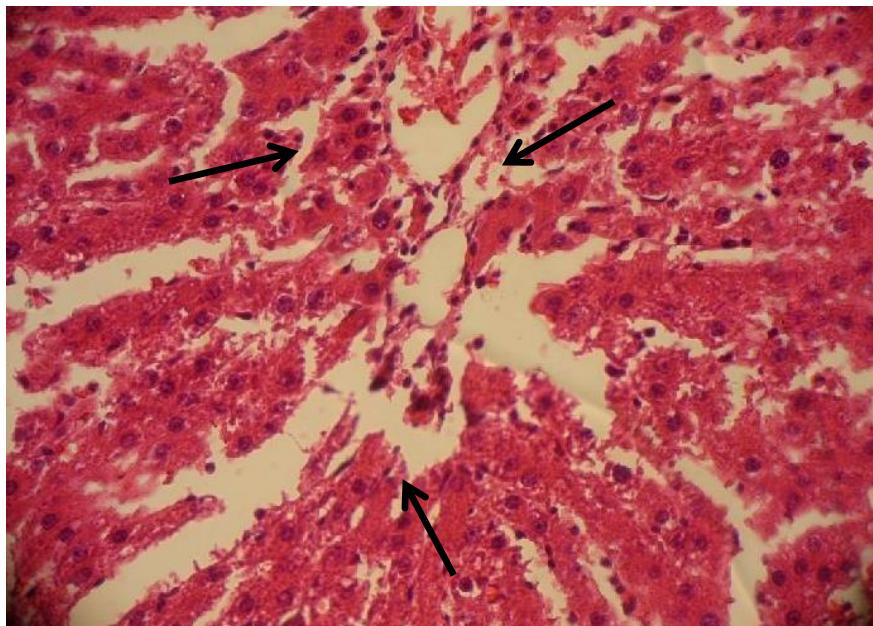
نمودار ۳. مقایسه داده های حاصل از سنجش آنزیم آکالین فسفاتاز در گروه های مورد آزمون. داده ها به صورت $Maen \pm SEM$ ارائه شده اند.

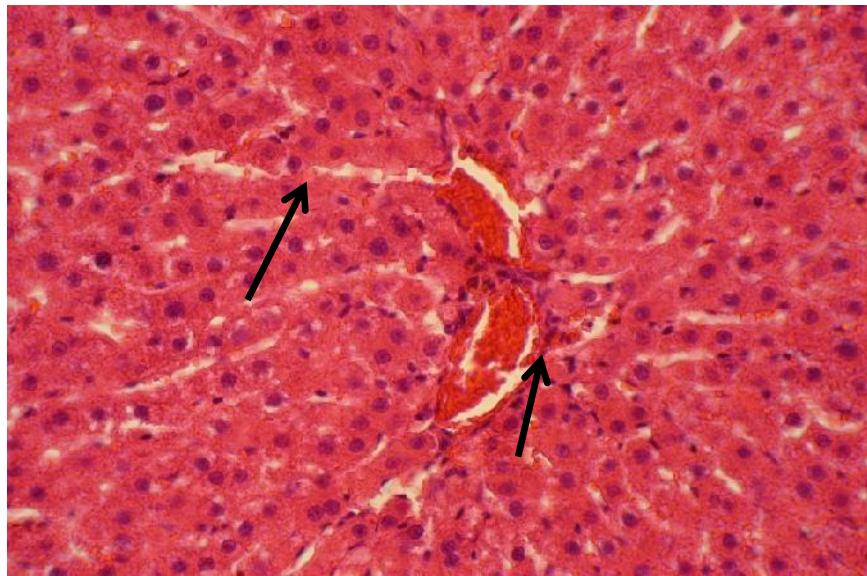

* معنی داری نسبت به گروه کترل. ** معنی داری نسبت به گروه تراکلریدکرین. ***: $P<0.001$ (Control vs. 200 mg/kg + roguen).

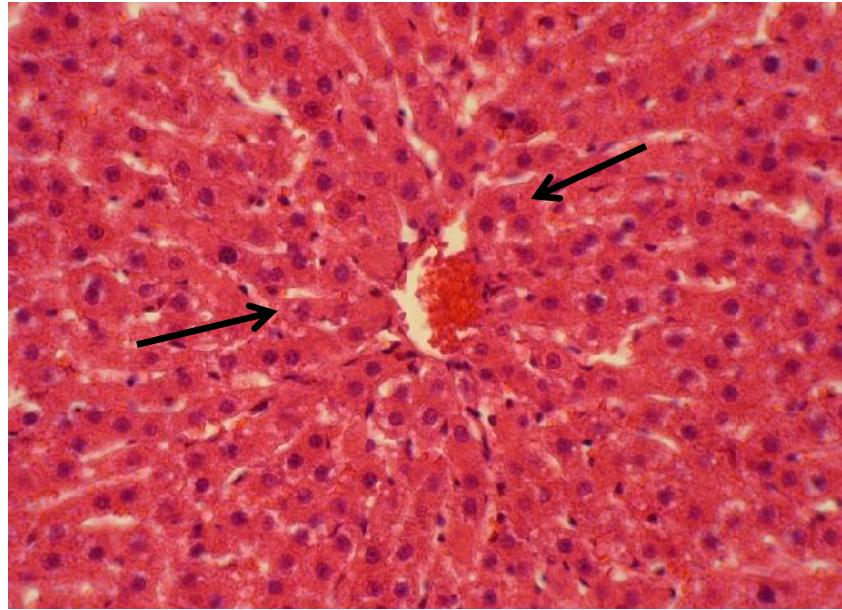
CCl_4 با نسبت ۱:۱ با روغن زیتون دریافت کرده بودند، در مدت کوتاهی سبب آسیب حاد کبدی می شود که با نکروز گستردگی هپاتوسیت ها (سلول های کبدی)، به هم ریختگی نظم طناب های سلولی کبدی و داربست سلولی و نشت تعداد قابل توجهی از سلول های التهابی از جمله لنفو سیت ها و نوتروفیل ها در اطراف ورید مرکزی همراه است (شکل ۳). در گروه تیمار شده با دوز ۴۰۰ میلی گرم بر کیلو گرم عصاره هیدروالکلی غافت، ناحیه نکروزه به میزان ۲ میلی لیتر بر کیلو گرم


مطالعات بافتی: نمونه های بافتی تهیه شده توسط میکروسکوپ نوری (ZEISS, Axioskop 2, mot/plus, Germany) مطالعه شدند. مطالعات بافتی نشان داد در گروه های کترل و شم بافت کبد سلول های کبدی کاملا طبیعی بوده و طناب های سلولی به طور منظم در اطراف سیاهرگ مرکزی قرار گرفته اند. همچنین هیچ نکروزی در سلول های کبدی به چشم نمی خورد (شکل ۱ و ۲). نتایج این مطالعه نشان داد که در گروه دریافت کننده تراکلریدکرین که میزان ۲ میلی لیتر بر کیلو گرم

می باشد، نکروز و نشت سلول های التهابی به میزان بسیار چشمگیری کاهش یافته است و تقریباً مشابه گروه کنترل شده است. این گروه اختلاف معناداری را نسبت به گروه کنترل نشان ندادند (شکل ۵).


کوچکتر شده و نشت سلول های التهابی در اطراف سیاهرگ مرکزی تا حدودی کاهش یافته است (شکل ۴). در گروه تیمار شده با دوز ۸۰۰ میلی گرم بر کیلو گرم عصاره هیدرولالکلی غافت، ترمیم بافت کبد بسیار بیشتر از دوز ۴۰۰


شکل ۱: مقطع بافتی تهیه شده از کبد گروه کنترل. سلول های کبدی (هپاتوسیت ها) و طناب های سلولی لوپول ها به طور منظم در اطراف سیاهرگ مرکزی قرار گرفته و هیچ نکروزی به چشم نمی خورد (پیکان). بزرگنمایی $400\times$ و رنگ آمیزی هماتوکسیلین اتوژین.


شکل ۲: مقطع بافتی تهیه شده از کبد گروه شم (دریافت کننده روغن زیتون به میزان ۲ میلی لیتر بر کیلو گرم). ساختار هپاتوسیت ها کاملاً سالم بوده و هیچگونه اختلالی در سلول ها و نظم آن ها اتفاق نیافتد (پیکان). بزرگنمایی $400\times$ و رنگ آمیزی هماتوکسیلین اتوژین.

شکل ۳: مقطع بافتی تهیه شده از کبد گروه دریافت کننده تتراکلرید کرین (دریافت کننده CCl_4 به میزان ۲ میلی لیتر بر کیلوگرم با نسبت ۱:۱ با روغن زیتون به مدت ۹۶ ساعت). نکروز و واکوئل دار شدن هپاتوسیت‌ها، به هم ریختگی طناب‌های سلولی کبدی و التهاب در اطراف سیاهرگ مرکزی را نشان می‌دهد (پیکان‌ها). بزرگنمایی $\times 400$ و رنگ آمیزی هماتوکسیلین-ائوزین.

شکل ۴: مقطع بافتی تهیه شده از کبد گروه تیمار شده با دوز ۴۰۰ میلی گرم بر کیلوگرم عصاره هیدروالکلی غافت. میزان نکروز هپاتوسیت‌ها تا حدودی کاهش یافته و ناحیه نکروزه کوچک‌تر شده است. نشت سلول‌های التهابی در اطراف ورید مرکزی کاهش یافته است (پیکان‌ها). بزرگنمایی $\times 400$ و رنگ آمیزی هماتوکسیلین-ائوزین.

شکل ۵: مقطع بافتی تهیه شده از کبد گروه تیمار شده با دوز ۱۰۰ میلی گرم بر کیلوگرم عصاره هیدروالکلی غافت. نکروز به طور قابل ملاحظه‌ای کاهش یافته است. نشت سلول‌های التهابی در اطراف ورید مرکزی به میزان زیادی کاهش یافته است. طناب‌های سلولی کبدی به صورت منظم درآمده‌اند و داربست سلولی مجدداً بازسازی شده است (پیکان‌ها). بزرگنمایی $\times 400$ و رنگ آمیزی هماتوکسیلین-ائزین.

داربست سلولی و همچنین ارتضاح سلول‌های التهابی در اطراف ورید مرکزی و ایجاد التهاب در بافت کبد بود. این اثرات، اثبات کننده اثر تخریبی تتراکلرید کربن بر بافت کبد می‌باشد. همچنین بر اساس نتایج به دست آمده عصاره هیدروالکلی برگ گیاه غافت به صورت وابسته به دوز بر بافت کبد و میزان آنزیم‌های کبدی موثر می‌باشد. درمان با عصاره‌ی غافت توانست میزان آنزیم‌های کبدی را کاهش دهد و باعث کاهش نکروز سلول‌های کبدی، بازسازی مجدد داربست سلولی و کاهش التهاب اطراف ورید مرکزی گردد. ابراهیمی و همکاران در پژوهشی نشان دادند که تتراکلرید کربن، توسط آنزیم‌های سیتوکروم P450 متابولیزه شده و منجر به تولید رادیکال‌های آزاد بسیار فعالی می‌گردد. این رادیکال‌های آزاد در کبد به پروتئین‌ها یا لیپیدهای غشا متصل شده و باعث پراکسیداسیون لیپیدی در غشا می‌گردد که

بحث

این بررسی به منظور مطالعه اثرات محافظتی عصاره‌ی هیدروالکلی برگ گیاه غافت بر بافت کبد و میزان آنزیم‌های کبدی در موش‌های صحرایی نر القا شده با تتراکلرید کربن انجام گرفت. گروه شم هیچگونه تفاوت معناداری را با گروه کنترل نشان نداده و بیان کننده‌ی آن است که روغن زیتون فاقد اثر بر بافت کبد و میزان آنزیم‌های کبدی می‌باشد و هر گونه تغییر در بافت کبد در گروه دریافت کننده‌ی تتراکلرید کربن که میزان ۲ میلی لیتر بر کیلوگرم CCl_4 را به نسبت ۱:۱ با روغن زیتون دریافت کردن تنها ناشی از اثرات تتراکلرید کربن است. نتایج این مطالعه نشان داد که تزریق تتراکلرید کربن باعث افزایش میزان آنزیم‌های کبدی AST، ALT و ALP می‌گردد. مطالعات بافتی حاکی از نکروز حاد سلول‌های کبدی، به هم ریختگی نظم طناب‌های سلولی کبدی و

در پژوهشی دیگر حسن رحمانی و همکاران نشان دادند عصاره هیدرولکلی عدس قرمز توانست از کبد در مقابل استرس اکسیداتیو ناشی از تراکلریدکرین محافظت نماید که این اثر را به ترکیب‌های فلاونوئیدی موجود در آن نسبت داده‌اند (۲۴). فلاونوئیدها دارای خاصیت آنتی اکسیدانی قوی بوده که یکی از فعالیت‌های آن‌ها به دامانداختن و حذف رادیکال‌های آزاد می‌باشد. خاصیت آنتی اکسیدانی آن‌ها به دلیل وجود گروه‌های هیدروکسیل و فنولی در ساختمان آن‌ها است (۲۵). در مطالعه‌ی حاضر عصاره هیدرولکلی غافت باعث کاهش میزان آنزیم‌های کبدی شد که با توجه به تحقیقات گذشته و وجود ترکیبات آنتی اکسیدانی مشابه در گیاه غافت، این اثر احتمالاً مربوط به فلاونوئیدهای موجود در عصاره می‌باشد. در مطالعه‌ی حاضر نشان داده شد که تراکلریدکرین سبب آسیب حاد کبدی می‌شود که با نکروز گستره هپاتوسیت‌ها، بهم ریختگی نظم طناب‌های سلولی کبدی و ارتشاح تعداد قابل توجهی از سلول‌های التهابی از جمله لنفوцит‌ها و نوتروفیل‌ها در اطراف ورید مرکزی کبد همراه است و همچنین میزان آنزیم‌های کبدی AST، ALT و ALP را در خون افزایش می‌دهد. از آنجایی که در تحقیقات گذشته نشان داده شده است که آنتی اکسیدان‌ها قادرند با کاهش پراکسیداسیون لپیدی و نکروز هپاتوسیت‌ها، کبد را در مقابل آسیب اکسیداتیو محافظت کنند و گیاه غافت نیز دارای ترکیبات آنتی اکسیدانی مانند ترکیبات فنولی و فلاونوئیدها می‌باشد (۱۵)، تصور می‌شود علت کاهش نکروز هپاتوسیت‌ها ترکیب‌های آنتی اکسیدانی موجود در عصاره‌ی گیاه غافت باشد.

نتیجه‌گیری

نتایج این مطالعه نشان داد که تراکلریدکرین میزان آنزیم‌های کبدی را افزایش داده و باعث ایجاد التهاب در بافت کبد گردید، در حالی که درمان با عصاره‌ی هیدرولکلی برگ

تخربیغ غشا را در پی دارد. اختلال در یکپارچگی غشای پلاسمایی سلول‌های کبدی باعث می‌شود، آنزیم‌های کبدی که به‌طور طبیعی در داخل سیتوزول قرار دارند، وارد جریان خون شده و میزان این آنزیم‌ها در خون افزایش یابد که بهترین شاخص برای مطالعه وضعیت کبدی می‌باشد (۲۰). در مطالعه‌ی حاضر نیز نشان داده شد که تراکلریدکرین باعث افزایش میزان آنزیم‌های کبدی و تخریب بافت کبد می‌گردد که با نتایج سایر محققین مطابقت دارد.

به نظر می‌رسد که استفاده از آنتی اکسیدان‌ها بتواند در خشی کردن رادیکال‌های آزاد و کاهش آسیب اکسیداتیو ناشی از آن‌ها موثر باشد. یون و همکاران در پژوهشی نشان دادند عصاره‌ی آبی گیاه غافت دارای خواص آنتی اکسیدانی و ضد التهابی بوده و در درمان بیماری‌های التهابی مانند خونریزی روده، بیماری‌های دستگاه ادراری و بیماری‌های کبدی مورد استفاده قرار می‌گیرد. در پژوهش یون نشان داده شد که عصاره‌ی آبی غافت با به دام انداختن رادیکال‌های آزاد ناشی از الكل، باعث کاهش میزان آنزیم‌های کبدی و التهاب بافت کبد گردید که این اثر را به ترکیب‌های پلی فنولی موجود در این گیاه نسبت داده اند (۲۱). ترکیب‌های فنولی دارای خواص آنتی اکسیدانی قوی بوده و اغلب در برابر رادیکال‌های آزاد مضر، از بدن محافظت می‌کنند (۲۲). مطالعات متعددی نشان داده اند که یک رابطه‌ی مثبت بین ترکیب‌های فنولی و فعالیت آنتی اکسیدانی در بسیاری از گونه‌های گیاهی وجود دارد. توانایی به داماندازی رادیکال‌های آزاد توسط ترکیب‌های فنولی، به دلیل گروه هیدروکسیل و خاصیت احیاکنندگی آن‌هاست (۲۳). در مطالعه‌ی حاضر نیز نشان داده شد که عصاره‌ی هیدرولکلی برگ غافت توانست موجب کاهش میزان آنزیم‌های کبدی و التهاب بافت کبد گردد که با توجه به تحقیقات گذشته در مورد عصاره‌ی غافت، احتمالاً این اثر مربوط به ترکیب‌های فنولی موجود در آن می‌باشد.

شدن مکانیسم اثر تتراکلریدکربن در کبد انجام گردد. همچنین از آنجایی که جداسازی ترکیب‌های مختلف گیاه غافت و استفاده از این ترکیب‌ها به طور جداگانه، می‌تواند سهم هر یک از آن‌ها را در بهبود سمیت کبدی بهتر مشخص کند، لذا جهت بررسی کامل‌تر اثرات برگ غافت بر بافت کبد، پیشنهاد می‌شود مطالعات علمی و بالینی بیشتری جهت مشخص شدن مکانیسم و اثرات واقعی درمان با غافت به عمل آید تا نتایج قابل قبول‌تری در این خصوص ارائه شود.

تقدیر و تشکر

در پایان لازم می‌دانیم از زحمات بی‌دریغ آقای رامتین پاکزاد، کارشناس ارشد فیزیولوژی گیاهی و خانم مژگان قبادی پور دکترای فیزیولوژی جانوری که در تهیه‌ی عصاره غافت، یاریگر ما بودند و همچنین پرسنل آزمایشگاه تحقیقات فیزیولوژی جانوری دانشگاه بوقوعی سینا که ما را در این پژوهه یاری نمودند صمیمانه تشکر و قدردانی نماییم.

غافت توانست با کاهش سطح سرمی آنزیم‌های کبدی، در بهبود سمیت کبدی ناشی از تتراکلریدکربن موثر باشد. این اثرات ممکن است به برخی از ترکیب‌های موجود در این گیاه از جمله مواد آنتی‌اکسیدانی و ضدالتهابی مربوط باشد. هر چند ترکیبات آنتی‌اکسیدانی در گیاهان بسیار متنوع می‌باشند، اما از آنجایی که ترکیب‌هایی نظیر پلی فنول‌ها و فلاونوئید‌های موجود در عصاره‌ی این گیاه، در بسیاری از گونه‌های دیگر گیاهان دارویی نیز وجود داشته و اثربخشی خود را در کاهش آنزیم‌های کبدی و سمیت کبدی ناشی از تتراکلریدکربن به اثبات رسانیده‌اند، لذا تصور می‌شود که بیشترین خاصیت ضدالتهابی و آنتی‌اکسیدانی گیاه غافت نیز مربوط به وجود این ترکیبات باشد. از آنجایی که اندازه‌گیری سطوح آنتی‌اکسیدانی کبد و میزان اکسیدان‌های (ROS) تولید شده توسط تتراکلریدکربن که استرس اکسیداتیو ایجاد کرده و باعث آسیب کبدی می‌شود، مکانیسم اثر تتراکلریدکربن در ایجاد مسمومیت کبدی را بیشتر مشخص می‌کند، لذا پیشنهاد می‌شود بررسی‌های بیشتری در این خصوص جهت مشخص

References

- 1- Jamali R, Jamali A. Non-alcoholic fatty liver disease. *Feyz*. 2010; 14: 169-81.
- 2- Terohid SF, Mirazi N, Sarihi A. Study of hepatoprotective effect of *Malva neglecta* L. hydroethanolic leaf extract in male rat induced with carbon tetrachloride. *J Cell & Tissue*. 2015; 6: 31-42.
- 3- Taghikhani A, Ansarisamani R, Afrogh H, et al. The hepatotoxic and nephrotoxic effects of *Stachys lavandulifolia* Vahl in rat. *J Mazandaran Univ Med Sci*. 2012; 22: 84-90.
- 4- Ahmadi Zadeh M, Amir Gholami F. Effects of cimetidine on CCl₄-induced hepatotoxicity. *Jundishapur Sci Med J*. 2010; 2: 1-8.
- 5- Gangarapu V, Gujjala S, Korivi R, Pala I. Combined effect of curcumin and vitamin E against CCl₄ induced liver injury in rats. *Am J Life Sci*. 2013; 1: 117-124.
- 6- Onuoha SC, Chinaka NC. Carbon tetrachloride induced renal toxicity and the effect of aqueous extract of *Gongronema latifolium* in Wistar albino rats. *Drug discovery*. 2013; 4: 15-16.
- 7- Mochizuki M, Shimizu S, Urasoko Y, et al. Carbon tetrachloride-induced hepatotoxicity in

pregnant and lactating rats. *J Toxicol Sci.* 2009; 34: 175-181.

8- Kamalakkannan N, Rukkumani R, Aruna K, Varma PS, Viswanathan P, Menon VP. Protective effect of N-acetyl cysteine in carbon tetrachloride-induced hepatotoxicity in rats. *Iranian J Pharmacol Ther.* 2005; 4: 118-123.

9- Kuriakose GC, Kurup GM. Antioxidant activity of *Aulosira fertilisima* on CCl₄ induced hepatotoxicity in rats. *Indian J Exp Biol.* 2008; 46: 52-59.

10- Roozbehi S, Razmi N, Akbartabar Touri M, Sadeghi H. Hepatoprotective effects of *Bupleurum exalatum* extracts against carbon tetrachloride induced liver injury in rats. *Armaghane-danesh.* 2015; 19: 1069-1081.

11- Mirazii N, Gholami M. Study of protective effect of *Avicennia marina* leaf hydroalcoholic extract on bone marrow tissue in male rats induced with CCl₄. *Arak Univ Med J.* 2016; 19: 88-98.

12- Ad'hiah AH, Al-Bederi ONH, Al-Sammarrae KW. Cytotoxic effects of *Agrimonia eupatoria* L. against cancer cell lines in vitro. *J Assoc Arab Univ Basic Appl Sci.* 2013; 14: 87-92.

13- Rechinger KH. Flora Iranica. Akademische Druck-u Verlagsanstalt, Graz. 1969; 148-152.

14- Ivanova D, Tasinov O, Vankova D, Kiselova-Kaneva Y. Antioxidative potential of *Agrimonia eupatoria* L. *Sci Technol.* 2011; 1: 20-24.

15- Correia HS, Batista MT, Dinis TC. The activity of an extract and fraction of *Agrimonia eupatoria* L. against reactive species. *Biofactors.* 2007; 29: 91-104.

16- Mirjana Z, Muruzovic KG, Mladenovic OD, Stefanovic SM, Vasic LR. Extracts of *Agrimonia eupatoria* L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. *J Food Drug Anal.* 2016; 24: 539-47.

17- Najafpour Navaei M, Golipour M, Parsa E. The effects of densities and planting dates on seed yield of *Agrimonia eupatoria* L. *Iran J Med Aromat Plant.* 2008; 24: 198-206.

18- Mirazi N, Movassagh SN, Rafieian-Kopaei M. The protective effect of hydro-alcoholic extract of mangrove (*Avicennia marina* L.) leaves on kidney injury induced by carbon tetrachloride in male rats. *J Nephropathol.* 2016; 5: 118-122.

19- Masjedi MS, Keyhanfar M, Behbahani M. In vitro evaluation of methanol extract of *Agrimonia eupatoria* on PBMC and 12 Pathogenic Bacteria. *J Med Plant.* 2017; 1: 167-73.

20- Ebrahimi S, Sadeghi H, Pourmahmoudi A, Askariyan SH, Askari S. Protective effect of *Zizphus Vulgaris* extract, on liver toxicity in laboratory rats. *Yasuj Univ Med Sci.* 2010; 16: 172-80.

21- Yoon SJ, Koh EJ, Kim CS, et al. *Agrimonia eupatoria* protects against chronic ethanol-induced liver injury in rats. *Food Chem Toxicol.* 2012; 50: 2335-41.

22- Erasto P, Grierson DS, Afolayan AJ. Evaluation of antioxidant activity and the fatty acid profile of the leaves of *Vernoniaamygdalina*

growing in South Africa. *Food Chem.* 2007; 104: 636-642.

23- Kaledaite R, Bernatoniene J, Majiene D, et al. Investigation of antiradical activity of *Salvia officinalis L*, *Urticadioica L*, *Thymus vulgaris L*. extracts as potential candidates for a complex therapeutic preparation. *J Med Plant Res.* 2011; 5: 6090-96.

24- Rahmani AH, Goudarzi M, Rashidi Nooshabadi MR, Houshmand Gh, Khadem Haghhighian H. Protective effect of red Lentil (*Lens Culinaris*) extract against carbon tetrachloride-induced hepatotoxicity in mice. *J Babol Univ Med Sci.* 2014; 16: 49-55.

25- Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. *Free Rad Biol Med.* 1996; 20: 933-56.

The Effect of *Agrimonia eupatoria* Leaf Hydroalcoholic Extract on Carbon Tetrachloride Induced Liver Toxicity in Male Rats

Khazaei M¹, Mirazi N¹

¹Dept. of Biology, Bu-Ali Sina University, Hamedan, Iran.

Corresponding Author: Khazaei M, Dept. of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamadan, Iran

E-mail: maryam.khazaei133@yahoo.com

Received: 17 Apr 2017 **Accepted:** 2 July 2017

Background and Objective: Carbon tetrachloride (CCl₄) is a toxic agent leading to hepatotoxicity. The aim of this study was to investigate the effect of *Agrimonia eupatoria* leaf hydroalcoholic extract (AEE) on carbon tetrachloride induced rat liver.

Materials and Methods: In this study, 42 male rats were randomly allocated to 6 groups: the control group receiving normal saline, 2ml/kg, ip and the sham group receiving olive oil, 2ml/kg, ip, the CCl₄ induced group receiving carbon tetrachloride/olive oil (1:1), 2ml/kg, single dose, ip. The treated groups (1, 2 and 3) were induced by carbon tetrachloride 1:1 with olive oil, 2ml/kg, single dose, ip and after two hours underwent treatment by 200 mg/kg, 400 mg/kg and 800 mg/kg AEE/day for 96 hrs, ip. Then, the blood samples were collected from their heart directly and subsequently serum levels of the liver enzymes were measured. The microscopic studies of liver tissue were performed. The data were analyzed with ANOVA and Tukey tests.

Results: The results of this study showed that the serum levels of liver enzymes significantly increased in the group receiving CCl₄ compared to the control group. Meanwhile, treatment by AEE significantly decreased the serum levels of liver enzymes in treated groups compared to the group receiving CCl₄ (P<0.001). Histological study revealed necrosis and inflammation in the liver tissue in CCl₄ group and reduction in necrotic cells and inflammation in AEE treated group.

Conclusion: Carbon tetrachloride can bring about necrosis and inflammation effects on the liver tissue. AEE can decrease toxic effects of carbon tetrachloride in the liver tissue by reducing the serum levels of liver enzymes.

Keywords: *Agrimonia eupatoria* L., liver toxicity, Carbon tetrachloride, liver enzymes, Rats