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Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in 

developed countries. Inflammation due to obesity and fat accumulation is the most 

important factor in the progression of metabolic syndrome. In cells which have a 

receptor for insulin hormone, inflammatory mediators target the insulin signaling 

pathway and cause insulin resistance. Peroxisome proliferator-activated 

receptors are a group of ligand inducible transcription factors, whose activation can 

improve insulin resistance and their agonists such as Genistein, which seems to be 

useful in prevention of insulin resistance development. Genistein is one of the soy 

derived isoflavonoids that affects carbohydrate and lipid metabolism resulting in 

prevention of insulin resistance. The current narrative review has concentrated 

mainly on highlighting the usefulness of Genistein in the improvement of insulin 

resistance and therapeutic potential of it in both in-vitro and in-vivo models. 

Genistein can increase fatty acid β-oxidation, decrease lipogenesis and improve 

insulin resistance in hepatocytes. In adipocytes, Genistein prevents downregulation 

of adiponectin expression and facilitates the upregulation of adiponectin expression. 

In β-islet cells, Genistein initiates the special cascade which leads to proliferation 

of β cells, resulting in increased secretion of insulin. Based on findings of the 

studies, it can be concluded that Genistein can be a useful agent in prevention of de 

novo lipid synthesis as well as proliferation of β cells. In this way the development 

of metabolic syndrome can be prevented. 
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Introduction

Metabolic syndrome is a group of states that take place 

together, increasing the risk of type 2 diabetes mellitus 

and steatohepatitis. These states consist of high blood 

glucose and pressure, extra fat around the waist, and 

dyslipidemia (1). It has a high prevalence in developed 

countries (about 22.4 % in adult individuals) (2). There 

is a body of growing evidence suggesting that obesity is 

the most important factor in the development of 

metabolic syndrome (3-5).  

The pathogenesis of metabolic syndrome is still 

controversial; 3 pathways are under the spot light 

including insulin signaling, hepatic lipogenesis and fatty 

acid β-oxidation (6-8). Because of high calorie diet and 

a sedentary life style, especially in developed countries, 

researchers believe that by adding supplements 

containing agents whose can affect the 3 mentioned 

pathways, lipid metabolism can be improved. Recent 

studies demonstrate that fat accumulation leads to 

inflammation. Inflammatory mediators, in cells which 

have receptors for insulin hormone, will cause insulin 

resistance. In this state; muscles, adipose tissue, and liver 

fail to respond well to insulin and cannot easily take up 

glucose from blood circulation (9-11). Hepatocytes and 

adipocytes are two important groups of cells which can 

develop insulin resistance; which is regarded as the most 

effective factor in the pathogenesis of hyperglycemia 

and hepatic steatosis (12). It seems that adipocytes, 

hepatocytes and pancreatic β-islet cells are vertices of a 

triangle in the progression of the metabolic disorders 

which lead to insulin resistance and its consequences 

(13-15). 

Peroxisome proliferator-activated receptors (PPARs) 

are a group of ligand inducible transcription factors that 

play an important role in expression of proteins which 

are involved in lipid metabolism. Studies indicate that 

PPARs activation can improve insulin resistance. Based 

on previous studies, PPARs agonists seem to be useful 

and effective in prevention of development of insulin 

resistance (16-19). 

Isoflavonoids are a cluster of flavonoid phenolic 

compounds. They are well known as phytoestrogens 

because of biological effects through estrogen 
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receptors. In addition to estrogenic effects, some other 

biological effects of isoflavonoids have been identified 

recently such as activation of PPARs (16).  

Genistein is one of the better-known soy derived 

isoflavonoids that has attracted the attention of 

scientists because of its beneficial effects on insulin 

resistance (20). The effects of Genistein in balancing 

carbohydrate and lipid metabolisms have been proved. 

Biochanin A and Formononetin are methylated forms 

of Genistein and demethylation of these compounds 

usually takes place in the intestine by acetogenic 

bacteria (Figure 1) (17,21-23). 

Although diverse metabolic effects of Genistein have 

been clearly indicated, this narrative review will mostly 

focus and highlight the effect of Genistein in insulin 

resistance development in both in vitro and in vivo 

models from different studies. 

 

 

Genistein 

 

 

Biochanin A 

Figure 1. Chemical formula of Genistein and Biochanin 

A (17). 

 

Abbreviations' list 

ACC: Acetyl CoA Carboxylase 

AMPK: Adenosine Monophosphate-activated Protein 

Kinase  

ACOX: Acyl-coenzyme A Oxidase  

AP-1: Activating Protein 1 

AS160: Akt Substrate of 160 kDa 

CPT1: Carnitine Palmitoyltransferase I  

CRE: CREB Response Element 

CREB: cAMP Response Element-binding Protein 

Epac1: Exchange factor directly activated by cAMP 1 

ERK: Extracellular Signal-regulated kinase 

FAS: Fatty Acid Synthase 

FOXO1: Forkhead Box O1 

G6pase: Glucose 6-phosphatase 

Grb2: Growth Factor Receptor-bound protein 2 

GSK3: Glycogen Synthase Kinase 3 

IRS: Insulin Receptor Substrate 

JAK2: Janus Kinase 2 

JNK: c-Jun N-terminal Kinase 

LXR: Liver X Receptor 

MAPK: Mitogen Activated Protein Kinase 

MEK: MAPK/ERK Kinase 

p-CREB: Phosphorylated cAMP Response Element-

binding Protein 

PDPK1: Phosphoinositide-dependent Protein Kinase 1 

PEPCK: Phosphoenolpyruvate Carboxykinase 

PGC1α: PPARγ Coactivator 1 alpha 

PI3K: Phosphatidylinositol 3 Kinase 

p-IRS: Phosphorylated Insulin Receptor Substrate 

PKB: Protein Kinase B 

PLC: Phospholipase C 

p-LXR: Phosphorylated Liver X Receptor 

PPARα: Peroxisome Proliferator-activated Receptor α 

PPRE: PPAR Response Element 

p70S6k1: p70 S6 Kinase 1 

Raf-1: Rapidly Accelerated Fibrosarcoma 

Ras: Rat Sarcoma 

SCD1: Stearoyl-coA Desaturase 

SOS: Son of Sevenless 

SREBP-1c: Sterol Regulatory Element-binding Protein 

1-c 

TNF(α): Tumor Necrosis Factor (α) 

UCP2: Uncoupling Protein 2 

 

Metabolic Effects of Genistein on Liver 

Liver is the main center of carbohydrate and lipid 

metabolism in human organism; in other words, the liver 

regulates the homeostasis of glucose and lipids in blood 

circulation. After meal and glucose absorption, insulin, 

is secreted from β-islet cells of the pancreas into blood 

circulation (13). Insulin binds to its receptor in 

hepatocytes and autophosphorylation of insulin receptor 

will occur in tyrosine residues. Insulin receptor is a 

tyrosine kinase protein, which phosphorylates insulin 
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receptor substrate1,2 (IRS 1, 2) in tyrosine residues and 

initiates the insulin signaling cascade. P-IRS binds to 

PI3k and helps the PI3k to phosphorylate the PIP2 to 

PIP3. Akt (PKB) activates when it binds to PIP3 and will 

have been phosphorylated by PDPK1. Activated Akt 

phosphorylates the serine and threonine residues in 

GSK3; in this way, inactivates the GSK3. Due to 

inactivation of GSK3, GS continues the synthesis of 

glycogen; resulting in glucose gradient from blood to 

liver (24-26). Additionally, activated Akt phosphory-

lates the FOXO1 transcription factor. FOXO1 

inactivates during phosphorylation and in this way, 

mRNA expression of enzymes which have important 

roles in gluconeogenesis such as PEPCK and G6pase, 

will decrease. Actually, hepatocytes uptake the blood 

glucose and downregulate the gluconeogenesis pathway 

for homeostasis of blood glucose (27). 

Obesity is the most important risk factor of 

hyperglycemia. Since the liver is the main center of 

lipogenesis, in obese persons, lipid accumulation in 

hepatocytes usually occurs. Peroxidation of fatty acids 

produces free radicals which lead to oxidative stress. 

Inflammation initiates in response to oxidative stress 

and inflammatory mediators accumulate in the liver. 

Inflammatory mediators activate different kinases; 

p70S6k1 is one of the important enzymes. p70s6k 

phosphorylates the IRS in serine residues. If IRS 

phosphorylates in the serine residues, it will degrade in 

proteasomes; so, insulin signaling cascade will not 

initiate and insulin resistance will occur (24,25). 

Genistein is an AMPK activator and PPARα agonist 

(28). AMPK is a kinase which activates in response to 

AMP and phosphorylates the CREB transcription 

factor. P-CREB binds to CRE in the promoter of 

PPARα gene and increases the mRNA expression of 

PPARα transcription factor (29). Proteins, which are 

involved in fatty acid β-oxidation such as CPT1, 

ACOX and UCP2, have PPRE in promoter region of 

own genes, therefore the expression of these proteins 

will increase in response to increased PPARα protein 

expression (Table 1) (30-32). Furthermore, AMPK 

phosphorylates and inactivates the LXR nuclear 

receptor in threonine residues; in this way, AMPK 

decreases the mRNA expression of SREBP-1c 

transcription factor. SREBP-1c is a transcription factor 

which upregulates the mRNA expression of enzymes 

involved in lipogenesis such as FAS, ACC and SCD1. 

That is to say, decreased protein expression of SREBP-

1c leads to decreased expression of proteins involved 

in lipogenesis resulting in decreased lipogenesis (Table 

1) (33,34). Also, it should be noted that AMPK 

phosphorylates and inactivates the p70S6K1, the 

enzyme which secretes from inflammatory mediators 

and inhibits the initiation of insulin signaling cascade. 

P70S6K1 is an effective factor in mRNA expression of 

SREBP-1c. It has been otherwise stated that p70S6K1 

phosphorylates the LXR in serine residues and then p-

LXR upregulates the SREBP-1c mRNA expression 

(34,35). 

As a result, Genistein can increase fatty acid β-

oxidation, reduce lipogenesis and improve insulin 

resistance in hepatocytes. 

Metabolic Effects of Genistein on Adipose Tissue 

Another group of cells which have receptors for 

insulin are adipocytes. Insulin binds to its receptor on 

adipocytes and PI3K/Akt signaling cascade will 

initiate. In adipocytes, activated p-Akt inactivates the 

AS160 protein during phosphorylation in tyrosine 

residues. Activated AS160, changes the Rab-GTP to 

Rab-GDP. On the other hand, GLUT4 translocation to 

the cell membrane is dependent on Rab-GTP. 

Therefore, by increased number of Rab-GTP due to 

inactivated AS160, the number of GLUT4 on the cell 

membrane of adipocytes will increase. Also, it can be 

said that by increasing the number of GLUT4 on cell 

membranes, glucose uptake by adipocytes will increase 

and as a result, the glucose concentration in the blood 

circulation will decrease (36,37). 

As previously mentioned, obesity is the most 

important risk factor for insulin resistance. Lipid 

accumulation in adipocytes will cause inflammation and 

secretion of inflammatory mediators. TNFα is one of the 

inflammatory mediators which activates the p70S6K1. 

This enzyme, like in hepatocytes, phosphorylates the 

IRS in serine residues and in this way inhibits the insulin 

signaling cascade. The result of insulin signaling 

inhibition in adipocytes is the decreased number of 

GLUT4 on cell membrane. By decreasing the number of 

GLUT4 on adipocytes' membrane, the rate of glucose 

uptake will decrease and because of this, the glucose 

concentration in the blood circulation will increase, 

which means insulin resistance (34,35). 

In addition to PI3K/Akt cascade, insulin initiates the 

other signaling cascade which is called MAPK/Ras 

signaling cascade. Similar to PI3k/Akt pathway, 

tyrosine phosphorylation of IRS is the first step of the 

MAPK/Ras pathway. In the next step, p-IRS interacts 

with Grb2; the protein which recruits SoS to change the 

Ras-GDP to Ras-GTP. A complex is made by binding 

the Ras-GTP to Raf-1 and phosphorylates the MEK 

protein family. Likewise, p-MEK phosphorylates the 

MAPK protein family such as ERK1/2/5, p38MAPK 

and JNK. Finally, p-MAPKs, through phosphorylation 

of various transcription factors in serine and tyrosine 
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residues at the nucleus, regulate the expression of 

various genes. It should be noted that, in addition to 

insulin, Ras/MAPK pathway activates in response to 

growth factors, environmental stress and pro-

inflammatory mediators (38,39). 

TNFα is one of the pro-inflammatory mediators 

which can phosphorylate and activate JNK through 

MAPK/Ras pathway. P-JNK, phosphorylates c-jun in 

cytoplasm and then, c-jun binds to c-fos to make Ap-1 

complex. Ap-1 is a transcription factor which 

translocates to the nucleus and downregulates the 

expression of adiponectin mRNA in adipocytes so 

synthesis and secretion of adiponectin will decrease 

subsequently (40). Adiponectin is a peptide hormone 

which is secreted from adipocytes into the blood 

circulation (41-43). Adiponectin binds to its receptors 

on skeletal muscle cells and hepatocytes; facilitates the 

insulin signaling cascade through the phosphorylation 

of PkB in an alternative pathway. As a result, by 

decreased expression of adiponectin mRNA and 

decreased concentration of adiponectin in the 

bloodstream subsequently, insulin sensitivity in 

skeletal muscle cells and hepatocytes will decrease 

(44,45). On the other hand, p-JNK phosphorylates the 

IRS in serine and threonine residues. As stated above, 

p-IRS in serine and threonine residues cannot initiate 

the insulin signaling cascade; it consequently will 

cause insulin resistance (34). 

Genistein, in adipocytes, prevents phosphorylation 

of JNK, in other words the mRNA expression of 

adiponectin will not inhibite. That is to say, Genistein 

is an agonist of PPARγ transcription factor which is 

one the most important transcription factors in 

upregulating the expression of adiponectin mRNA. As 

a result, Genistein prevents from downregulation of 

adiponectin mRNA expression and facilitates the 

upregulation of adiponectin mRNA expression 

simultaneously (Table 1) (46). 

 Metabolic Effects of Genistein on Skeletal Muscle  

The other group of cells which have a receptor for 

insulin are skeletal muscle cells. That is to say, 

the insulin-receptor complex stimulates the cellular 

uptake of glucose. Obesity and hyperlipidemia lead to 

lipid deposition in skeletal muscle cells (47,48). Insulin 

resistance, as previously mentioned, is the consequence 

of lipid accumulation. In other words, in insulin 

resistant state, insulin-dependent glucose uptake is 

markedly decreased in skeletal muscle cells (49). 

Leptin is a peptide hormone dominantly secreted by 

adipocytes and has receptors on skeletal muscle cells. 

When leptin binds to its specific receptor, it 

phosphorylates the JAK. In the next step, p-JAK 

phosphorylates and activates AMPK. It should be 

added that AMPK is the key protein in fatty acid β-

oxidation signaling pathway (50-53). Activated AMPK 

(p-AMPK), phosphorylates and inactivates ACC. 

During the inactivation of ACC, the concentration of 

Malonyl-CoA will decrease. Malonyl-CoA is regarded 

as a fatty acid β-oxidation inhibitor agent. As a result, 

by decreased concentration of Malonyl-CoA, fatty acid 

β-oxidation will increase. On the other hands; p-AMPK 

translocates to the nucleus and activates the PPAR-α 

and PGC1α transcription factors. By the PPARα and 

PGC1α activation, the mRNA expression of genes 

involved in fatty acid β-oxidation like CPT-1 and 

UCP2 will increase (54-61). In conclusion, leptin 

signaling pathway prevents lipid accumulation in 

skeletal muscle cells.  

The development of obesity and lipid accumulation 

in skeletal muscle cells result in leptin resistance and 

lipid deposition in skeletal muscle cells will severely 

intensify (62-64). In other words, leptin resistance is 

associated with insulin resistance. 

Genistein stimulates fatty acid β-oxidation in skeletal 

muscle cells in a way independent of leptin receptor. 

Based on recent studies, Genistein activates the AC in 

skeletal muscle cells and the concentration of cAMP 

increase. In the next step, increased cAMP activates 

Epac1, which in turn activates the PLC (65-68). 

Activated PLC phosphorylates the JAK2 and as a 

consequence, the phosphorylation of AMPK occurs. 

As mentioned previously, activated AMPK stimulates 

the fatty acid β-oxidation and in this way, prevents lipid 

accumulation. In conclusion, the cAMP-JAK-AMPK 

pathway plays an important role in regulating the fatty 

acid β-oxidation. Through stimulating the mentioned 

pathway, Genistein can be a beneficial agent in 

prevention of lipid accumulation in skeletal muscle 

cells. 

Effects of Genistein on Pancreas 

After meal and glucose absorption, the increased 

concentration of blood glucose leads to glucose uptake 

by pancreatic β cells, which is the main stimulator of 

insulin secretion. Insulin facilitates the glucose uptake 

by adipocytes and skeletal myocytes and in this way 

prevents hyperglycemia. It should be noted that insulin 

is the most important agent in the pathophysiology of 

hyperglycemia. In other words, in hyperglycemic 

patients, there is an insufficient secretion of insulin due 

to complete or partial destruction of pancreatic β-islet 

cells. It seems feasible that preventing from destruction 
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of the pancreatic β-islet cells can be a therapeutic target 

in hyperglycemic patients (69). 

Due to recent studies on β-islet cells, Genistein 

initiates the Ac/cAMP/pKA/p-ERK1,2 cascade which 

leads to proliferation of β cells. Also, β-islet cells 

proliferation is accompanied with increased secretion 

of insulin (Table 1) (70-73). 

Genistein is an estrogen receptor agonist but its effect 

on β-islet cells proliferation is independent of estrogen 

receptors. In other words, by blocking the estrogen 

receptors, the effect of Genistein on β-islet cell 

proliferation remains (74). 

Genistein stimulates the GIIS in an alternative 

pathway. On the basis of previous studies, Genistein 

stimulates GIIS through the cAMP/pKA pathway; 

which leads to increase intracellular ca2+. This pathway 

is controversial; proteins which are specific in this 

pathway are still unknown. Blocking the intracellular 

protein synthesis lead to decreased secretion of insulin 

(Table 1) (74,75). 

 

Table 1. Summary of researches' results about metabolic effects of Genistein  

Animal Model/ 

Cell Line 

Genistein Dose/ 

Duration 
Mechanism Described Effects Ref 

6 weeks old, Male, Sprage 

Dawly rats (150– 200g), 

Fructose induced insulin 

resistance 

0.25 mg/kg/day, 

SC injection,  

for 10 weeks 

 

SC: subcutaneous 

Genistein consumption in 

fructose induced insulin 

resistant rats, improved 

insulin resistance and lipid 

status markers in addition to 

its anti-inflammatory and 

anti-oxidative effects. 

1-Significant decrease in plasma: 

Glucose, LDL-c, VLDL, TAG, 

ALT, HOMA-IR, insulin, 8-

isoprostane, visfatin, IL-6 

2-Significant decrease in hepatic:  

TNFα, IL-6 

(74) 

10 weeks old, Female, 

Wistar Albino rats (180– 

220g), Ovariectomized, 

HFD+ STZ induced 

hyperglycemia 

 

HFD: High fat Diet 

STZ: Streptozotocin 

1 mg/kg/day, SC 

injection,  

for 8 weeks 

Genistein protected islet β-

cells in HFD + STZ induced 

hyperglycemic rats through 

two ways: 

1-activation of Akt /ERK 1,2 

pathway 

2-regulation of some 

apoptotic agents 

1-Significant decrease in plasma: 

Glucose, LDL-c, TAG, TC  

2-Significant increase in β-cells: 

p-Akt, p-ERK1,2, Bcl-2 

3-Significant increase in plasma 

HDL-c 

4-Significant decrease in caspase3 

(68) 

8 weeks old, Male, Sprage 

Dawly rats (180– 220 g) , 

Alloxan induced 

pancreatic damage 

9 , 18 , 30 

mg/kg/day , 

Intragastrical,  

for 4 weeks 

Genistein reduced islet β-

cells loss in Alloxan induced 

hyperglycemic rats in a 

dosage dependent manner. 

1-Significant decrease in plasma 

Glucose  

2-Significant increase in 

plasma insulin and percent of total 

cell area per islet 

(69) 

Islet β-cells of 8 weeks 

old, Male,  Sprage Dawly 

rats (180– 220g) , Alloxan 

induced pancreatic 

damage 

6.25, 12.5, 25 

μmol/L for 24, 

48, 72 hours 

Genistein improved the 

survival and proliferation of 

islet β-cells which were 

exposed to Alloxan. 

1-Significant increase in insulin 

concentration level and survival of 

islet β-cells (percent of fold 

changes relative to vehicle control) 

(69) 

9 weeks old, Male, Sprage 

Dawly rats (180– 220g), 

which were treated with 

Genistein in neonatal 

period, HFD induced 

NASH 

 

NASH: Non-Alcoholic 

Steatohepatitis 

4, 40, 160 

mg/kg/day,  

SC injection,  

for 5 days 

Increased fatty acid β-

oxidation and decreased 

hepatic lipogenesis in rats 

which were treated with 

Genistein in neonatal period, 

prevented from development 

of NASH. 

1-Significant decrease in plasma: 

TAG, ALT, insulin, T-Cholesterol 

2-Significant increase in plasma: 

 Glucagon, TNFα, IL-6 

3-Significant decrease in hepatic 

TAG 

4-Significant increase in mRNA 

and protein expression of 

 PPARα, CPT1 

 5-Significant decrease in mRNA 

and protein expression of: 

FAS, SREBP-1C, TNFα 

(28) 
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Animal Model/ 

Cell Line 

Genistein Dose/ 

Duration 
Mechanism Described Effects Ref 

6 weeks old, Male, Sprage 

Dawly rats(180– 220g), 

HFSD induced steatosis 

 

HFSD: High Fat Sugar 

Diet 

4 ,8 mg/kg/day , 

Intragastrical, for 

12 weeks 

Genistein consumption 

improved steatosis in rats 

which were under the HFSD, 

through stimulating fatty 

acid β- oxidation and 

inhibiting hepatic 

lipogenesis as well as 

activation of AMPK 

pathway. 

1-Significant decrease in plasma: 

TAG, FFA, LDL-c 

2-Significant decrease in hepatic: 

TAG, TC, FFA 

3-Significant increase in hepatic: 

p-AMPK, p-ACC 

4-Significant decrease in hepatic 

SREBP-1c  

5-Significant decrease in mRNA 

expression of hepatic: 

FAS, GPAT 

6-Significant increase in mRNA 

expression of: 

ACO, CPT1, PPARα 

(31) 

6 weeks old, Male, Sprage 

Dawly rats (180– 220g), 

HFD induced steatosis 

4, 8 mg/kg/day, 

Intragastrical, for 

12 weeks 

Genistein consumption in 

rats which were under the 

HFD, via suppressing the 

JNK pathway, prevented 

from steatohepatitis 

development.  

1-Significant decrease in serum 

enzymes activity: 

ALT, AST 

2-Significant decrease in 

inflammation score 

3-Significant decrease in serum 

and hepatic TBARS 

4-Significant decrease in serum 

and hepatic: 

TNF-α, IL-6 

5-Significant decrease in hepatic 

mRNA expression: 

IL-6, TNF-α 

6-Significant decrease in hepatic p-

JNK, NF-κB,  

p-lκB 

7-Significant increase in 

hepatic lκB 

(75) 

4 weeks old, Male, Albino 

mice (25-26g), HFD fed 

1 mg/kg/day, 

Intragastrical, for 

45 days 

Genistein consumption in 

HFD fed mice improved 

hepatic insulin signaling via 

inhibiting the SKq which is a 

negative modulator of 

insulin signaling. 

1-Significant decrease in plasma 

and hepatic: 

TC, TAG, FFA 

2-Significant increase in hepatic: 

p-Y-IRβ, p-AKt ser, p-Y-IRS 1, 2, 

p-AMPK Thr 172 

3-Significant decrease in             p-

s6k1Thr389, p-s-IRS1,2 

4-Significant decrease in 

mRNA expression of hepatic 

lipogenesis involved genes: 

SREBP-1c, FAS, ACC, SCD1,  

LXR-α 

5-Significant increase in hepatic 

mRNA expression of fatty acid β- 

oxidation involved genes: 

PPARα, ACO, UCP2, CPT1 

(33) 

3T3-L1 Cells 
10, 25, 50 μM , 

for one hour 

Genistein pretreated 3T3-L1 

cells could inhibit the TNFα 

downregulation of 

adiponectin through 

inactivation of JNK 

pathway. 

1-Significant increase in 

adiponectin mRNA and protein 

expression  

2-Significant decrease in p-JNK  

3-Significant increase in  

p-SEK, Foxo1  

(44) 
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Animal Model/ 

Cell Line 

Genistein Dose/ 

Duration 
Mechanism Described Effects Ref 

Male ICR mice, 6-8 weeks 

of age, Macrophage-

derived conditioned 

medium induced insulin 

resistance 

(inflammatory condition) 

10, 25, 50 mg/kg, 

once, 

Intragastrical 

Genistein consumption, in 

inflammatory condition, 

improved insulin sensitivity 

through activation of IRS/ 

Akt and AMPK pathways in 

adipose tissue. 

1-Significant decrease in blood 

Glucose and Insulin resistance 

2-Significant decrease in 

adipocytic p-IκKβ, TNFα, IL-6  

3-Significant increase in adipocytic  

p-IRS(Tyr), p-Akt, GLUT4, p-

AMPK 

4-Significant decrease in p-IRS 

(S307) 

(76) 

9 weeks old, Female, 

Sprage Dawly  rats (180– 

220g) , Ovariectomized, 

HFD induced insulin 

resistance 

0.1% 

supplementation 

to HFD,  

for 4 weeks 

Genistein consumption in 

dietary food, decreased the 

insulin resistance in 

ovariectomized HFD fed 

rats. This effect caused 

partly by decreased rate of 

hepatic lipogenesis and 

increased rate of fatty acid β-

oxidation in adipocytes. 

1-Significant decrease in blood 

Glucose, Insulin and Insulin 

resistance 

2-Significant decrease in hepatic 

FAS enzyme activity 

3-Significant increase in adipocytic 

CPT, SDH enzyme activity 

(29) 

INS1 cells, Treated with 

1mM Glucose for 24 hours 

(pancreatic damage) 

0.01, 0.1, 1, 5, 10 

μM for 24 hours 

Genistein increased β-cells 

growth and proliferation via 

upregulating the cyclin D1 

and activating the 

cAMP/pKA/ERK1,2 

pathway. 

1-Significant increase in 

proliferation and growth of β-cells 

and cyclin D1 

2-Significant increase in p-

ERK1/2, intracellular cAMP, pKA 

activity 

(70) 

4 weeks old, Male, 

C57BL/6 mice, STZ 

induced hyperglycemia 

0.25 g/ kg diet for 

6 weeks  

(2 weeks before 

STZ injection and 

4 weeks after 

STZ injection) 

Genistein improved 

hyperglycemia and insulin 

resistance via increasing the 

β-cells proliferation in 

hyperglycemic mice which 

were induced by STZ. 

1-Significant decrease in blood 

Glucose 

2-Significant increase in β-cells 

proliferation and plasma insulin 

(70) 

10-month- old, Male, 

C57BL/6 mice, HFD + 

STZ induced 

hyperglycemia 

250 mg/kg diet 

for 8 weeks 

Genistein dietary 

supplementation improved 

hyperglycemia through 

preventing from β-cell 

apoptosis. 

1-Significant decrease in blood 

Glucose and apoptosis 

2-Significant increase in plasma 

insulin and β-cell mass 

(71) 

Human pancreatic β-cells, 

High Glucose induced 

damage 

100 nM for 24 

hours 

Genistein protected against 

high Glucose induced cell 

apoptosis and inhibition of 

cell proliferation in human 

pancreatic β-cells via 

increasing the expression of 

Bcl-2 through the estrogen 

receptor. 

1-Significant increase in β-cells 

proliferation 

2-Significant decrease in β-cells 

apoptosis 

3-Significant increase in Bcl-2 

mRNA and protein expression 

(77) 

Insulin secreting (INS-1E 

cells) 

1, 5, 10 μM for 

48 hours 

Genistein potentiated GIIS 

in INS-1E cells via cAMP/ 

pKA mediated pathway 

involving elevation of 

intracellular Ca2+ 

concentration. 

 

GSIS: Glucose Induced 

Insulin Secretion 

1-Significant increase in GSIS and 

intracellular Ca2+ 

(73) 

 

INS-1E Cells 

0.001, 0.01, 0.1, 

1, 2.5, 5, 10, 100 

μM for 30 

minutes 

Genistein activated the 

AC/cAMP/pKA cascade and 

potentiated GIIS in 

pancreatic islet β-cells. 

1-Significant increase in: GIIS, 

cAMP accumulation, AC activity, 

cAMP dependent pKA activity 

(72) 
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Conclusion 

  In conclusion, Genistein is a natural cost-effective 

compound which exerts no toxic biological effects. 

Dozens of animal-model and cell-culture studies 

indicate the positive effects of Genistein on improving 

insulin resistance. Based on findings of recent studies, it 

is found that Genistein can be a useful agent in 

prevention from de novo hepatic lipid synthesis and 

development of steatosis. Lipid deposition in liver is the 

main cause of metabolic syndrome. On the other hand, 

in adipocytes, Genistein stimulates adiponectin secretion 

into blood circulation and in this way facilitates insulin 

signaling in hepatocytes, adipocytes and skeletal muscle 

cells. As mentioned, insulin resistance or insulin 

deficiency is the most effective cause of metabolic 

syndrome. Genistein stimulates proliferation of β-islet 

cells; in this way it can compensate for insulin 

deficiency. In skeletal muscle cells, Genistein prevents 

fat deposition which is the main cause of inflammation 

and destruction of insulin signaling cascade. Metabolic 

syndrome is a very complex disorder and requires 

therapeutic agents with numerous ways of action that 

can regulate etiological pathways. In recent studies, 

researchers have strongly recommended Genistein as a 

pluripotent agent in modulating insulin resistance and 

hyperglycemia. Genistein reduces inflammation and 

production of reactive oxygen species in obese 

individuals. However, further studies require to prove 

the exact therapeutic potential in order to determine the 

most effective dose of Genistein consumption. 
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