1. Li J, Metruccio MM, Evans DJ, Fleiszig SM. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathogens. 2017;13(5):e1006392. [
DOI:10.1371/journal.ppat.1006392] [
PMID] [
PMCID]
2. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogen Disease. 2013;67(3):159-73. [
DOI:10.1111/2049-632X.12033] [
PMID]
3. Polotto M, Casella T, de Lucca Oliveira MG, et al. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Diseases. 2012;12(1):176. [
DOI:10.1186/1471-2334-12-176] [
PMID] [
PMCID]
4. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403-34. [
DOI:10.1128/CMR.19.2.403-434.2006] [
PMID] [
PMCID]
5. Spalding C, Keen E, Smith DJ, Krachler A-M, Jabbari S. Mathematical modelling of the antibiotic-induced morphological transition of Pseudomonas aeruginosa. PLoS Comput Biol. 2018;14(2):e1006012. [
DOI:10.1371/journal.pcbi.1006012] [
PMID] [
PMCID]
6. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5:277. [
DOI:10.2147/IJN.S9220] [
PMID] [
PMCID]
7. Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Report. 2015;5:14813. [
DOI:10.1038/srep14813] [
PMID] [
PMCID]
8. Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria-"a battle of the titans". Front Microbiol. 2018;9. [
DOI:10.3389/fmicb.2018.01441] [
PMID] [
PMCID]
9. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed. 2012;7:6003. [
DOI:10.2147/IJN.S35347] [
PMID] [
PMCID]
10. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227. [
DOI:10.2147/IJN.S121956] [
PMID] [
PMCID]
11. Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415-27. [
DOI:10.1039/C7CS00748E] [
PMID] [
PMCID]
12. Hafidh RR, Abdulamir AS, Vern LS, et al. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J. 2011;5:96. [
DOI:10.2174/1874285801105010096] [
PMID] [
PMCID]
13. Current K, Dissanayake N, Obare S. Effect of iron oxide nanoparticles and amoxicillin on bacterial growth in the presence of dissolved organic carbon. Biomedicine. 2017;5(3):55. [
DOI:10.3390/biomedicines5030055] [
PMID] [
PMCID]
14. Sun S, Zeng H, Robinson DB, et al. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126(1):273-9. [
DOI:10.1021/ja0380852] [
PMID]
15. Piri F, Ebrahimi MT, Amini K. Molecular investigation of CTX-M gene in extended spectrum β lactamases (ESBLs) producing Pseudomonas aeruginosa isolated from Iranian patients with burn wound infection. Arch Med Lab Sci. 2019;4(1).
16. Armijo LM, Jain P, Malagodi A, et al. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem? Colloidal Nanoparticles for Biomedical Applications X; 2015: International Society for Optics and Photonics. [
DOI:10.1117/12.2085048]
17. Borcherding J, Baltrusaitis J, Chen H, et al. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environment Sci: Nano. 2014;1(2):123-32. [
DOI:10.1039/c3en00029j] [
PMID] [
PMCID]
18. Haney CE. Effects on iron nanoparticles on Pseudomonas Aeruginosa biofilms: University of Dayton; 2011.
19. Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol. 2011;9(1):34. [
DOI:10.1186/1477-3155-9-34] [
PMID] [
PMCID]
20. Umamaheswari K, Baskar R, Chandru K, Rajendiran N, Chandirasekar S. Antibacterial activity of gold nanoparticles and their toxicity assessment. BMC Infect Disease. 2014;14(S3):P64. [
DOI:10.1186/1471-2334-14-S3-P64] [
PMCID]
21. Grumezescu AM. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology: William Andrew; 2017.
22. Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol. 2012;25(7):1402-11. [
DOI:10.1021/tx200513t] [
PMID] [
PMCID]
23. Touati D. Iron and oxidative stress in bacteria. Arch biochem Biophysic. 2000;373(1):1-6. [
DOI:10.1006/abbi.1999.1518] [
PMID]