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Neuropathic pain (NP) is the outcome of lesion or disease of the nervous system, 
and it substantially influences the quality of life. Various inflammatory diseases 
such as rheumatoid arthritis (RA) and even cancer, may cause NP. Today, treatment 
of NP is the biggest pharmacological hurdles. Targeting inflammation is a broad 
task, since many mediators are involved in onset of particular disease. Among these 
many mediators, the reactive oxygen and nitrogen species generated by 
macrophages and neutrophils are of great interest because of their major 
contribution in development of inflammation and NP. This review will concentrate 
on the pathogenesis of inflammation based on involvement of reactive oxygen and 
nitrogen species and the activation of signalling cascades in response to oxidative 
stress. A systematic, and comprehensive search was conducted in the database. 
Based on the inclusion criteria, more than 300 peer-reviewed publications and 
200 articles were chosen. In this review, data on oxidative stress and inflammation 
is compiled and discussed in the context of chronic neuropathic pain. It is suggested 
that oxidative stress can activate a variety of pro-inflammatory factors involved in 
chronic diseases. Animal and clinical evidence suggests that oxidative stress and 
inflammation linked to overproduction of ROS are highly likely to represent a 
critical factor for the development of NP in inflammatory diseases. 
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Introduction
NP is a chronic disorder, which carectrised by 

unpleasant sensory symptoms such as allodynia (pain in 
response to a non-noxious stimulus) and hyperalgesia (an 
increased response to a noxious stimulus) (1). According 
to the International Association for the Study of Pain 
(IASP), NP is "pain begun or produced by a lesion or 
malfunction in the somatosensory nerve system, either in 
the peripheral nervous system (PNS) or in the central 
nervous system (CNS). About 18% of patients with 
chronic pain suffer from NP (2). Various of the clinical 
diseases have been linked to NP including; diabetes 
mellitus, leprosy, cancer, AIDS-related neuropathy, 
phantom limb pain, postherpetic neuralgia, cervical disc 
protrusion, and multiple sclerosis (MS) (3). It is reported 
that oxidative stress are one of the important and common 
mechanism in all of the mentioned diseases (Figure 1). 
The peripheral nerve axoplasm is rich in phospholipids 
and mitochondria. If their antioxidant system is 
weakened, they are therefore more sensitive to oxidative 

stress (such as reducing the enzymes SOD and catalase) 
(4). Furthermore, unlike the blood-brain barrier in the 
CNS, the blood vessels of peripheral neurons are 
permeable to neurotoxins such as reactive oxygen species 
(ROS). There is some evidence that all of above diseases 
disrupts the electron transport chain and ROS generation 
and promotes mitochondrial damage and inflammation 
(4, 5). Additionally, increased production of ROS can 
increase activity of different enzymes and ion channels 
(4). Therefore, metabolic dysfunction and ATP deficiency 
also caused by acting of ROS on the activity of enzymes 
in the mitochondria. (5). Generally, increased ROS 
generation in various diseases can increase nociceptor 
sensitivity, microtubule depolymerization, and nerve 
degeneration. All of these events lead to release of 
inflammatory mediators in response to ROS 
accumulation. (4). Here, we will report some 
pathogenesis of inflammation based on involvement of 
reactive oxygen and nitrogen species and the activation of 
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signalling cascades in response to oxidative stress (Figure 
1). 

 

 
Figure 1. An illustration of oxidative stress-induced NP. Generation of ROS is increased in the various diseases such as diabetes 

mellitus, leprosy, MS, and RA. Due to high lipid content, neural cells in the PNS and CNS are susceptible to high content of ROS 
and subsequent lipid peroxidation. High content of ROS can activate several transcriptional factors such as nauclear factor kappa 
B (NFKB). Over activation of NFKB leads to increased generation of inflammatory markers and also apoptosis. Additionally, 
high content of ROS can induce DNA damage Oxidative stress and inflammation are mutually exclusive processes. During 
inflammatory illnesses, mitochondrial dysfunction can increase ROS production, and lipids and proteins oxidation. Therefore, 
increased levels of ROS and subsequently increased levels of inflammatory agents lead to maintenance of NP (4, 5). The figure 
was created by BioRender scientific illustration software. 

 

Rheumatoid Arthritis (RA) and oxidative stress 

RA is a chronic inflammatory disease, which 
characterized by joint degeneration and systemic 
symptoms including pain, stiffness, swelling, and joint 
defects (6). The most typically problem in the 
rheumatologic disorders is pain. Its prevalence is 0.5-
1% of the population (7). Oxidative stress plays a 
critical role in the initiating of RA (8). It has been 
reported excess level of ROS at the damaged joints in 
the RA can induce inflammation and hyperalgesia as 
well as chronic pain (9-11). The major free radicals 
wich generated in RA is nitric oxide (NO) and 
superoxide anion. The NO generates by NO synthase 
(NOS). There is ample evidence for NO's role in the 
development of chronic pain in the RA (12). For 
example, it can induce vasodilation and increase 
vascular permeability to pain-producing substances 
such as bradykinin. In addition, cyclooxygenase 
(COX) over-activation and the high production of 
prostaglandins by NO may lead to inflammation and 
chronic pain (12). Therefore, NOS inhibitors could be 
a therapeutic target for RA patients with chronic pain. 

In addition to NO, disruption of the nuclear factor 
erythroid 2 (NF-E2) / heme oxygenase-1 (HO-1) 
pathway, an important oxidative stress signaling 
pathway, leads to the development of chronic pain in 

RA. Indeed, it is suggested that this signaling pathway 
can be considered as a novel target for analgesia in the 
RA (12-15). 

In patients with RA, the activity of NF-E2 / HO-1 
pathway is decreased and oxidative / antioxidant 
balance is disrupted. Activating of the NF-E2 linke to 
the Nrf2 transcription factor. 

In the case of oxidative stress in the RA, the HO-1 
enzyme catalysis the heme group to carbon monoxide 
(CO), Fe2+, and biliverdin, which is then converted to 
bilirubin by the enzyme bilirubin reductase (13). 
Disruption of HO-1 activity can increase generation 
and release of free radocals in primary afferent neurons 
and so amplified pain perception in the CNS. So, the 
HO-1 enzyme plays an important role in the 
antioxidant/oxidant balance and pain perception (14).  

It is also reported that activating the Nrf2 / HO-1 
signalling pathway can reduce pain perception in the 
patients with the RA (16). Moreover, Nrf2 activators 
are considered adjunctive therapy by increasing the 
influence of analgesic drugs (16-18). Therefore, the 
Nrf2 / HO-1 pathway is also considered a new strategy 
for regulating gene transcription in oxidative stress.  

Leprosy and oxidative stress 
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Leprosy is one of the most common treatable 
peripheral neuropathies (19), mainly occurring in 
tropical and subtropical countries. It usually involves 
the skin, nerves, nasal mucosa, and eyes. Leprosy is 
caused by Mycobacterium leprae (M. leprae), an 
intracellular gram-positive alcohol-acid-fast bacillus. 
NP can occur as a chronic complication of leprosy via 
various mechanisms, such as peripheral nerve 
irritation, inflammatory responses, vasculitis, and 
oxidative stress. Leprosy has tropism to Schwann 
cells (SCs) and macrophages (20), and causes nerve 
damage, demyelination, loss of axonal conduction, 
inflammation, and eventually disability. Leprosy-
induced NP reported in 11-22 % of patients; and 85 % 
of them developed NP after the antimicrobial treatment 
period (21, 22). 

Although, the underlying mechanism (s) of leprosy-
induced NP is far from clear, oxidative stress is an 
important factor in development of pain in leprosy. 
Free radicals, such as superoxide anion, hydrogen 
peroxide, and hydroxyl radicals, are produced during 
phagocytosis by macrophages (host cells of M. leprae), 
the principal defense mechanisms against bacterial 
infections (21). Although, nonenzymatic and enzyme-
based antioxidants (Vitamins A, E, C, and glutathione) 
can modulate the high generation of free radicals in the 
body, the imbalance of oxidant/anti-oxidant capacity in 
leprosy is in favor of excess ROS production. 
Oxidative stress and high generation of ROS by the M. 
leprae disregulates glucose metabolism in the SCs 
dururing leprosy. For example; the glucose-6-
phosphate dehydrogenase (G6PDH) activity and 
intracellular glucose metabolism were elevated when 
SCs was infected with the M. leprae (23); then, 
mitochondrial membrane potential was affected, ROS 
production increased, and SCs became apoptotic. 
Additionally, excess level of ROS in the leprosy 
reduces mitochondrial activity and lactate production 
in infected SCs by reducing host cell energy sources 
(24).  The Krebs cycle in SCs is critical for myelination, 
so decreased lactate and mitochondrial membrane 
potential in the infected cells may lead to early 
demyelination in leprosy (25, 26). Therefore, the 
activity of G6PDH enzyme increases in the leprosy.  

Leprosy neuropathy is divided into two stages: first, 
the involvement of SCs with infection initiates intrinsic 
injury mechanisms and oxidative stress, and second, 
change of SCs glucose metabolism cause axonal 
damage, loss of neurons, and NP (27). It has been also 
reported that M. leprae causes neuropathy by lowering 
SCs differentiation and myelination genes such as 
MBP, MPZ / P0, and Krox 20 (28-30). 

Additinally, NP and axonal damage observed after 
impaired lactate transfer from glial cells to neurons (28, 
29). In line of this, in the one study, Save et al., showed 
incresed sciatic nerve conduction velocity in the M. 
leprae-infected sciatic nerve (31). These events are 
related to various factors including; the decreased 
lactate production in SCs, decreased axonal Krebs 

cycle activity, loss of mitochondrial function and 
swelling, decreased axon energy production, decreased 
axon metabolism, hypophosphorylation 
neurofilaments, and loss of neural conduction (32). The 
relationship between oxidative stress and 
immunological markers in the pathogenesis of leprosy 
needs further investigation. 

Guillain-Barré syndrome (GBS) and oxidative 
stress 

GBS is an acute polyneuropathy that begins with an 
autoimmune reaction. The leukocytes infiltrate into the 
PNS, causing neuroinflammation, demyelination, and 
axonal degeneration. Its prevalence is 1-2 cases per 
100,000 populations per year. It is the most common 
inflammatory demyelinating polyneuropathy (AIDP) 
in North America and Europe (32-37). In AIDP, the 
immune system responds to SCs or myelin, which 
causes demyelination. GBS was triggered by previous 
infections with various microorganisms in the gut and 
upper respiratory tract (37). As many as 60% of cases 
are caused by autoantibodies, including anti-GM1 
(anti-GM1) and anti-GD1a, linked to C. jejuni 
infection. Campylobacter jejuni is the most prevalent 
infectious agent that causes GBS, followed by 
cytomegalovirus (CMV) and Epstein–Barr virus 
(EBV). Microbiota-host nervous system molecular 
mimicry accounts for much of GBS's pathogenesis (36, 
37). 

Moderate to severe NP symptoms are among the 
signs and symptoms of GBS. As many as 55% to 86% 
of patients report experiencing discomfort in their 
lower back/sciatica/neck/muscle, joint, and visceral 
areas. Acute NP is most likely caused by 
neuroinflammation, whereas chronic NP is most likely 
caused by sensory fiber neurodegeneration (36). The 
primary etiology of the illness remains a mystery, 
despite several hypotheses (33-35). However, it has 
been established that oxidative stress and free radical 
toxicity play a significant role in the developing GBS. 
(34). Therefore, anti-oxidant therapy may help alleviate 
some symptoms of GBS such as areflexia or 
hyperreflexia. 

In the bacterial-induced GBS, phagocytic cells are 
activated to defend against bacteria and viruses that 
produce ROS. The high production of ROS by 
phagocytosis causes deficiency of NADPH oxidase, 
which may be associated with autoimmunity. For 
halide compounds to operate as a substrate, superoxide 
anion must first be transformed to hydrogen peroxide 
via NADPH oxidase (MPO)-catalyzed processes (38). 

Aditionally, it is reported that increased CSF levels 
of uric acid (UA) are a sign of elevated oxidative stress 
in the GBS. One of the most important activities of the 
UA is to remove peroxynitrite and other ROS from the 
plasma, which accounts for around 60 percent of its 
antioxidant activity (39). The UA as an energy 
biomarker is associated with nucleic acid catabolism, 
adenosine, and ATP metabolism (39), as well as, has a 
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neuroprotective effect on the CNS in models of MS, 
brain ischemia, and spinal cord injury (40).  Studies 
have shown that its serum level changed in some 
diseases such as  MS, neuromyelitis Optica (NMO), 
Alzheimer and Parkinson's disease (41). Similarly, in 
one study, Chang et al., demonstrated that UA levels in 
CSF are greatly raised in patints with GBS and AIDP 
(42), and a purine or ATP metabolism is also enhanced 
in GBS. Toxins like oxygen and nitrogen are produced 
by macrophage activity, inducing nerve inflammation.  
Peroxynitrite and other free radicals lead to the spread 
of damage by disrupting the respiratory chain and ATP 
metabolism (43). Indeed, increased production of pro-
inflammatory cytokines due to myelin degeneration 
involved in the etiology of GBS. Experimental 
autoimmune neuritis (EAN) is the most prevalent 
subtype of GBS and is used as an animal model for 
AIDP (44). The central and peripheral sensitivity to the 
initiation and maintenance of NP is increased by 
activation of spinal glial cells (45). The P2X4 receptor 
(P2X4R) is an ATP-gate ion channel that upregulated 
spinal microglia, demonstrating an essential role in NP 
following peripheral nerve injury. When extracellular 
ATP is bound to its receptors (P2X4R), it exerts an 
excitatory impact on synapses (46). According to 
Zhang et al., findings, P2X4R was implicated in 
developing EAN mechanical allodynia by increasing 
P2X4R expression in lumbar spinal microglia, 
particularly those located in the dorsal horns of the 
spinal column (47). Another cause of GBS and EAN is 
a protein called macrophage migration inhibitory factor 
(MIF) (48). Inflammation, cell proliferation, 
suppression of apoptosis, and regulation of immune 
cell migration and activation all contribute to the 
pathophysiology of many forms of inflammation and 
autoimmune illnesses (49).  

Also, down-regulating P53 activity protects 
macrophages from NO-induced apoptosis (50, 51, 52). 
GBS patients have higher plasma and CSF MIF 
concentrations than healthy individuals. When MIF is 
neutralized, symptoms of EAN in mice may be 
improved or eliminated (48). Stressful or infectious 
conditions, such as lipo-oligosaccharide (LOS) of C. 
jejuni, release significant quantities of MIF into the 
bloodstream, which increases GBS infection (53). LOS 
increase in NF-κBp65 translocation, MIF, and TLR-4 
expression in monocytes (54). Through the stimulation 
of cytokine release (TNF- and IL-1), MCP-1, and iNOS 
(inducible nitric oxide synthase), MIF produces 
neuronal excitability (55). As a result, MIF activates T 
cells in GBS and EAN nerve injury by promoting the 
production of proinflammatory cytokines and other 
toxic mediators (NO, matrix metalloproteinases 
MMPs) (56). Extracellular fluids seem to include 
serum albumin, which has antioxidant properties and 
may play a role in protecting cells from free radicals. 
(57). Albumin levels are reduced in GBS patients 
compared with healthy individuals (58), but the 
mechanism of this effect is still unclear. 

Fibromyalgia (FM) and oxidative stress 

Chronic FM is charectrised by widespread pain, 
fatigue, sleep difficulties, cognitive impairment, and 
severe depression. FM is a diagnosis given to patients 
who suffer from widespread chronic pain that cannot 
be explained by other sources, such as systemic 
inflammation or injury (59-67). It is demonstrated that 
patients with converted migraine and headaches have a 
high prevalence of FM. The headaches associated with 
FM may be caused by mitochondrial dysfunction and 
oxidative stress (67). Various factors including 
genetics, infections, and physical or mental traumas, 
are likely asscociated with the pathogenesis of FM (59- 
62). The data indicated an imbalance between oxidants 
and antioxidants capacity in FM patients (68, 69). 
Indeed, the alterations of the oxidant and antioxidant 
indicators may serve as essential biomarkers for 
diagnosing and treating FM (70). These markers 
strongly correlate with the FM clinical symptoms, 
implying that oxidative stress may partially contribute 
to FM's development. The total antioxidant capacity 
(TAC), antioxidant enzyme activities, and antioxidant 
compounds were evaluated in patients with the FM. 
Compared to healthy controls, FM patients had lower 
TAC and zinc levels but higher antioxidants copper and 
ceruloplasmin levels. Several evidence suggested that 
zinc and copper may play an important role in FM (71, 
72).  

It is reported that blood mononuclear cells in patients 
with FM have decreased mitochondrial DNA and 
coenzyme Q10 (CoQ10) concentration and increased 
amounts of ROS (63). Oxidative stress is also 
associated with muscle pain-related factors such as 
muscle Z band disorganization, abnormal 
mitochondrial shapes and numbers, and sarcolemma 
damage, resulting in muscle stiffness and pain (64). 
Muscle biopsy samples of FM patients also revealed 
the presence of inflammation markers, an excess of 
subsarcolemmal mitochondria, aberrant mitochondria, 
ragged red fibers, and a deficiency of cytochrome-c-
oxidase (CcO) (complex IV of oxidative 
phosphorylation) (65). Additionally, unmyelinated 
nerve fibres, and inflammatory foci were detected as a 
pattern of neurogenic inflammation in the FM patients 
(66).   

It was discovered that SOD and catalase activity was 
lower in FM patients compared to healthy controls 
(73). The decreased activity of these antioxidant 
enzymes in FM patients may affect the body's 
hydrogen peroxide (H2O2) and superoxide levels. 
Increased H2O2 production has been associated with 
pain in patients with FM (73). 

Oxidative Stress and the role of coenzyme Q10 in 
the FM patients 

It has been identified that several oxidative-related 
factors found in skin biopsies taken from FM patients 
including; mitochondrial malfunction, low CoQ10 
levels, mitochondrial Genome contents, and enzymatic 
activities. In FM patients, the activities of respiratory 
chain enzymes (complex III, complex I + III, and 
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complex II + III) directly dependent on CoQ10 and 
mobility of complexes I, II, and IV were dramatically 
reduced (64). The laser doppler flowmetry technique 
demonstrated that patients with FM have aberrant 
microcirculation of the skin over sensitive areas. The 
results confirm that localized hypoxia and the ensuing 
drop in high-energy phosphate concentrations cause 
oxidative stress and membrane LPO. Improper control 
of capillary blood flow might lead to abnormal 
microcirculation (64). 

CoQ10 deficiency has been associated with various 
illnesses, including FM symptoms. CoQ10 serves two 
critical functions in cells: first, as a cofactor for 
mitochondrial activity, and second, as a highly 
effective free radical scavenger, protecting cells from 
oxidative stress-induced lipid peroxidation and DNA 
damage. Additionally, decreased ATP levels and 
increased oxidative stress are linked to CoQ10 
deficiency. Lipid peroxide (LPO), produced in 
response to oxidative stress, is known to reflect 
intracellular ROS generation indirectly (63-65, 74). 

Oxidative Stress and the role of inflammation in 
the FM patients 

Endogenously generated oxidants are responsible for 
mast cell invasion (75), increased production of 
proinflammatory mediators, and changes in sensory 
perception of pain caused by microglia activation. Mast 
cells are adjacent to nerve fibres, enabling them to 
migrate and control nociception and neural activity 
(76). Due to their migration and degranulation, 
proinflammatory, vasoactive, and neurosensitizing 
mediators are produced. Mast cells are known to help 
with allergies and immunology, and they have also 
been linked to FM inflammation. Mast cells and 
microglia also communicate (77, 78). In pain 
competitions, microglia in the thalamus are responsible 
for maintaining the sensation of pain after the initial 
stimulus has passed (79). Increased Interleukin 8 (IL-
8) levels, a strong predictor of central sensitization and 
hyperalgesia, may be associated with glial cell 
activation. Excitatory chemicals in the CNS or 
proinflammatory cytokines secreted by peripheral 
immune cells stimulate glial cells. This cycle may be 
exacerbated by stress, explaining why FM symptoms 
can develop in reaction to stress. The fact that IL-8 
levels have increased without IL-1 levels suggests that 
FM symptoms are controlled by the sympathetic 
system rather than by prostaglandin-related processes 
(80). An increase in pro-inflammatory cytokines (IL-1 
and TNFa) and growth factors (NGF and VEGF) was 
seen in both the nerves and the brain, contributing to 
the persistence of inflammation and pain (81). 

Cancer pain and oxidative stress 
Current treatment options for cancer pain, a well-

known and significant medical problem, are generally 
ineffective. To improve pain control in patients with 
cancer, we need to understand the interplay between 
tumor microenvironment, cancer therapy, and the 

body's responses to these biochemical changes. 
Immune system stimulation results in the recruitment 
of white blood cells (i.e., macrophages, neutrophils, T 
cells) and produce inflammatory mediators. They 
impact the external micro-environment surrounding 
cancer cells (82). Therefore, we can improve pain 
management and quality of life of these patients 
significantly by understanding details about the 
molecular processes that lead to nociception produced 
during cancer development and therapy. An oxidative 
environment surrounds cancer cells, intimately linked 
to immune system activation (82). In this part, we want 
to focus on oxidative stress generated in the tumor 
microenvironment and the impact on cancer 
symptoms. 

One of the metabolic waste products of cancer cells' 
resistance to oxidative stress is the amino acid 
glutamate (83). Tumors create an oxidative 
environment in the extracellular space through 
glutamate release, promoting neuronal transmission 
and human pain (84). ROS levels rise dramatically in 
bone tumor micro-environments, resulting in massive 
glutamic acid synthesis and release (85). Glutamate 
stimulates afferent neuron excitability by activating 
NMDA receptors on the peripheral nerve ends, 
changing synaptic plasticity in the dorsal horn, and 
enhancing pain sensitivity via central sensitization 
(86). Cystine is exchanged for glutamate in a 1:1 ratio 
by the system xC antiporter, Na+-independent, and 
secretes glutamate from cancer cells. Antioxidant 
defense mechanisms are crucial for cancer cells since 
they are constantly exposed to high oxidative stress 
(87). Cancer biology's two critical features are the 
cellular dependency on glycolysis for energy supply 
even in the presence of oxygen and tumor formation 
and angiogenesis responses to hypoxic and low glucose 
tumor environments (88). Cancer cells develop chronic 
glucose intolerance and rely on an increased glucose 
uptake rate to generate glycolytic ATP. Glycolysis 
harms cancer cells in an aerobic environment by 
producing ROS due to respiration (89). Increased 
expression of xCT and system xC activity has 
improved cancer cell survival in response to increased 
oxidative stress (88, 90). This mechanism, xC 
glutamate/cystine antiporter, enhances the import of 
cystine by metabolically active cancer cells developing 
in bone (Traverso, Ricciarelli, et al., 2013). In the bone 
environment, autocrine and paracrine effects of 
extracellular glutamate may influence tumor and host 
cell activity (91). Autocrine and paracrine effects of 
extracellular glutamate in the bone environment may 
influence tumor and host cell activity (92). As a result, 
peripheral nociceptors in the brain may be activated 
either directly or indirectly. 

It is well established that the redox state of the tumor 
microenvironment affects the pain threshold by 
changing the peripheral NO levels. In various pain 
types, NO appears to be a key neurotransmitter 
modulating spinal nociceptive processing. The isoform 
iNOS is distinguished by its higher NO production than 
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the constitutive members (93). It has a role in 
establishing and maintaining central and peripheral 
sensitization in inflammatory and NP and is expressed 
in response to cytokine exposure. Numerous 
investigations have demonstrated that iNOS level in 
the tumor microenvironment is importantly associated 
with nociception (93). In pathologic situations, nitric 
oxide produced by the iNOS enzyme activates TRPV1 
and TRPA1 channels in rats, increasing nociception 
and sensitizing the CNS to pain (94). 

Cancer-induced bone pain (CIBP) and oxidative 
stress 

It has been established that CIBP is an independent 
kind of pain in the spinal cord and dorsal root ganglia, 
distinct from inflammatory and NP based on 
neurochemical and cellular characteristics. Primarily, 
people with CIBP seek treatment because the condition 
has progressed (95). Patients who seek therapy for 
CIBP are typically already in the advanced stages of 
cancer, and CIBP is frequently the first evident sign 
(96). This type of bone pain usually results from distant 
metastasis rather than primary bone cancer. For 
instance, metastases to the bones can alter the balance 
between bone deposition and resorption, leading to 
lesions with abnormally high levels of 
proinflammatory or analgesic chemicals released into 
the bone microenvironment. 

CIBP is characterized by extensive astrocyte 
proliferation and hypertrophy in the dorsal horn of the 
spinal cord (97), as well as a notable lack of change in 
the expression of the neuropeptide’s substance P and 
calcitonin gene-related peptide, which are both 
expected features of both inflammatory and NP models 
(98). The extended activation of several inflammatory 
cytokines, the acidic tumor-bone micro-environment, 
increased ROS levels, and central sensitization 
mediated by brain plasticity all have been related to 
CIBP (96). Antioxidants maintain a dynamic balance 
between ROS formation and removal under normal 
conditions. Cancer-related pain affects 30 to 50 percent 
of disease patients and 75 to 90 percent of individuals 
with late-stage metastatic cancer (99). The production 
of ROS is thought to play a role in the central 
sensitization of CIBP, and certain cancers can increase 
ROS levels in the dorsal horn of the spine (100). 
 

Discussion  
Due to high lipid content, neural cells are susceptible 

to excess content of ROS (oxidative stress) and lipid 
peroxidation. It is well accepted that ROS considered 
as a signaling molecule (at low concentrations), and 
also as a mediator of inflammation (at high 
concentrations). The main sources of ROS are 
mitochondrial respiratory chain and NADPH oxidase 
(4, 5).  It is reported that excess content of ROS during 
NP can turn on an inflammatory machine and 
subsequently increased release of pro-inflammatory 
cytokines, including; TNF-α, IL-1β, IL-2, and IL-6, 

and adhesion molecules (4).The high ROS generation 
in NP can initiate the proinflammatory generation 
through activation of multiple transcription factors, 
including human polynucleotide phosphorylase 
(hPNPaseold-35), nuclear factor kappa B (NF-κB), 
activator protein 1 (AP-1), specificity protein 1 (Sp1), 
peroxisome proliferator-activated receptors (PPARs). 
Therefore, high ROS generation and inflammation are 
closely related, which are taking part in the 
pathogenesis of chronic NP. So, oxidative stress and 
inflammation are mutually exclusive processes and 
antioxidants maintain a dynamic balance between ROS 
formation and removal under normal conditions (5). 

Different disorders such as diabetes mellitus, RA, 
leprosy, cancer, AIDS-related neuropathy, postherpetic 
neuralgia, cervical disc protrusion, and MS are related 
to NP (3). There is some evidence that oxidative stress 
in all of mentioned disorders highly related to 
pathophysiology of NP. The peripheral nerve axoplasm 
is rich in phospholipids and mitochondria. If their 
antioxidant system is weakened, they are therefore 
more sensitive to oxidative stress. There is some 
evidence that oxidative damage in central and 
peripheral nervous system may play a role in the 
pathophysiology of NP, which disrupts the electron 
transport chain and ROS generation and promotes 
mitochondrial damage and inflammation. High 
production of ROS during NP can activate transduction 
of ion channels, so peripheral nerve function is altered 
(9). Generally, increased ROS generation in various 
diseases can increase nociceptor sensitivity, 
microtubule depolymerization, and nerve 
degeneration.  

 

Conclusion 
The present study relies on previous researchs that 

suggest inflammation and oxidative stress are mutually 
exclusive processes. Excess content of ROS during 
various diseases such as RA, leprosy, GBS, and FM 
can turn on an inflammatory machine and subsequently 
increased release of pro-inflammatory cytokines. On 
the other hand, inflammatory diseases increase ROS 
generation and oxidative stress exacerbates 
inflammation. Since, neural cells are vulnerable to 
excess level of ROS and lipid peroxidation due to their 
high lipid content. As a result, neuroinflammation has 
been linked to oxidative stress in NP. 
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