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SRl gl ROl o[tV There is considerable evidence in the field of epilepsy
research suggesting that melatonin may have a potential therapeutic role in the

treatment of epilepsy. Investigating the effects of melatonin on neuronal electrical
activity may provide valuable insight into the development of adjunctive therapies
in this context. We aimed to investigate the prophylactic properties of melatonin
using the intracellular recording technique in an epilepsy model of snail neurons,
which exhibit epileptic behavior similar to that in human neurons.

AV To study the impact of melatonin (100 uM) on firing pattern
and action potential (AP) configuration in an epileptic condition, the current clamp
technique was used on Helix aspersa neurons. Recordings were made before and
after administering Pentylenetetrazole (PTZ) (25 mM).

The findings demonstrated that applying melatonin to cells in normal
Ringer's solution did not significantly alter the resting membrane potential (RMP)
or the amplitude and duration of the AHP and AP. However, a significant decline
in frequency was evident (P<0.05). Application of melatonin after PTZ
significantly decreased the firing frequency of APs while concurrently enhancing
the amplitude of AHP, which had been reduced by PTZ, and hyperpolarizing the
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[EIEIRHOUr study demonstrates that melatonin has protective effects against
some of the adverse impacts of PTZ on neuronal firing patterns in Helix aspersa
neurons. These findings suggest that melatonin may play a crucial role in

modulating neuronal excitability, which is important in epilepsy.
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Introduction

Epilepsy is a chronic neurological condition that
affects people of all ages, ethnicities, socio-economic
statuses, and geographical locations. (1, 2). Despite the
high prevalence and long history of this syndrome and
the widespread use of antiepileptic drugs, a definitive
therapeutic approach for epilepsy remains elusive
because current antiepileptic drugs are not effective for
all patients and can cause debilitating side effects(3).
To gain a deeper insight into the treatment of epilepsy,
it is important to directly examine the physiological
functions and electrical properties of neurons because
the pathophysiology of epilepsy is related to increased
abnormal neuronal activity. Intracellular recording of
snail neurons provides a unique opportunity to
investigate the cellular mechanisms underlying
neurological disorders such as epilepsy (4). For
instance, convulsants such as pentylenetetrazol (PTZ)
have been shown to elicit a potential pattern in snail
neurons that resembles the epileptic activity observed
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in mammalian nerve cells known as paroxysmal
depolarization shift (PDS) (5, 6). These electrical
events are irregular changes in the voltage of the
neuronal membrane. Although transient, PDS lasts
significantly longer than the depolarization seen in
typical action potentials. PDS typically displays a
distinct voltage pattern, beginning with an action
potential discharge that gradually diminishes in
amplitude until only minor oscillations remain on a
depolarized plateau (7). Therefore, it can be used as a
suitable model to study cellular effects. Melatonin
(MLT), a hormone derived from tryptamine, is an
endogenous substance that has an important effect on
the nervous system. Melatonin is primarily produced
by the pineal gland. It is released mainly during the
night (8). This fundamental molecular structure is
essential for sustaining life in many organisms, from
bacteria to humans (9). Melatonin can potentially
enhance brain health and mitigate the risk of serious
neurodegenerative and neuropsychiatric dysfunctions
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(10). Available clinical and basic science data suggest
that melatonin may have therapeutic value in treating
epilepsy (4, 11) and that it has anticonvulsant
properties that are effective against chemically induced
seizures (3, 12). The antioxidant properties of
melatonin and its low toxicity make it an appealing
option for use as an adjunctive therapy in epilepsy
treatment (3). Based on the current evidence regarding
the relationship between melatonin and epilepsy, along
with studies suggesting that melatonin may reduce
neuronal activity by decreasing excitability in epileptic
models and through the inhibitory GABA system
(13)as well as its inhibitory effects on voltage-
dependent calcium channels and reduction of
excitatory neurotransmitter release (14), we aimed to
study the prophylactic properties of melatonin using
the intracellular recording technique in an epilepsy
model of snail neurons, which exhibit epileptic
behavior comparable to that observed in human cells.
The current clamp technique allows for precise
measurements of neuronal firing patterns and action
potential shapes, which are critical for understanding
the electrophysiological changes induced by
melatonin(15). By measuring parameters such as
action potential frequency, amplitude, and resting
membrane potential, we can understand how melatonin
modulates neuronal excitability under both normal and
epileptic conditions.

Materials and Methods

Animals

In this research, the garden snail Helix aspersa was
utilized, which was collected from the northern region
of Iran. The animals were maintained under laboratory
conditions and provided with lettuce as a dietary
supplement. All experiments were conducted on the F1
neuron, which exhibited sensitivity to PTZ in the
subesophageal ganglion. Snail neurons are relatively
large and accessible, making them ideal for
intracellular recording techniques.

Snails were put in water before the experiment to keep
them active. Once the snails had emerged from their
shells, the experiments were initiated. First, the shell
was removed with a bone cutter. Then, it was attached
to the board with a needle. The ganglion mass was
dissected and pinned into a recording chamber
containing Sylgard 184. The connective tissue was then
isolated from the surrounding cells using fine forceps
under a stereomicroscope. No digestive enzymes were
used in this step. After fixation was completed, certain
physical characteristics were utilized to identify the F1
neuron and insert the microelectrode (6). F1 neurons in
the right parietal ganglion were visually distinguished
by size, color and position relative to other cells(7).
All experiments' phases were conducted per the
protocols described in the referenced articles and were
also reviewed and approved by Zanjan Medical
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University's animal ethics committee.
(ZUMS.REC.1393.99).

Solutions and Drugs

The bathing solution was augmented with melatonin at
a concentration of 100 uM (16, 17) and
pentylenetetrazol (PTZ) at a concentration of 25 mM.
Melatonin was freshly prepared daily and dissolved in
a small volume of pure ethanol and saline (0.9% NacCl).
It was administered via a perfusion system. The tubes
containing the melatonin solution were also wrapped to
safeguard against light-induced degradation.

Normal Ringer's solution consists of the following (in
mM): NaCl 80, CaCl2 10, MgCI2 5, KCI 4, Glucose
10, HEPES 5, and the pH has been adjusted to 7.7 with
Trizma base. All materials were provided by Sigma.
Intracellular Recording

The alteration of the action potential was recorded
using a microelectrode. Before use the microelectrodes
were prepared by drawing borosilicate glass capillaries
with internal filaments (Clark Electromedical
Instruments, UK) through a puller apparatus
(Narishige, Japan). Subsequently, the microelectrodes
were filled with a solution of 3M KCI. The silver wire
was positioned within the microelectrode glass, coated
with Ag/AgCl. The resistance at the tip of the
microelectrode ranged from 3 to 5 MQ (18). This set
was associated with the amplifier 1X1 (Dagan
Corporation). In all experiments, an agar bridge,
comprising 4% agar in normal Ringer, was employed
as a reference electrode .The apparatus above was
maintained within a Faraday cage (4).

Following the insertion of microelectrodes into the
neurons, the basic spontaneous neuronal activity was
obtained before and following the administration of
melatonin and PTZ with an intermittent trend. The data
was digitized using an analog-to-digital converter
(ADInstrument, Australia) (6). The resulting data were
stored for subsequent analysis using LabChart 7
software (ADInstruments, Australia). In these
experiments, the electrical activity of the neurons was
recorded using the current-clamp technique. A
minimum of five cells were recorded and analyzed in
each experimental group. Only identified cells with a
constant resting membrane potential more negative
than -36 mV were included in the data collection. After
5 minutes of primary recording, melatonin (100 pM)
was administered to the bath, and recordings were
taken for another 5 minutes before PTZ was
introduced. In the therapeutic group, PTZ (25 mM) was
first added to the Ringer’s solution, and after 3 minutes
of recording, melatonin was added to the Ringer’s
solution containing PTZ. It should be mentioned that
melatonin's therapeutic and protective effects have
been studied in different groups of snails.
Subsequently, the parameters of the action potential
were analyzed, including the frequency of spontaneous
electrical activity (Hz), duration (mS), and amplitude
of the action potential as well as after-
hyperpolarization (AHP) amplitude and resting
membrane potential (RMP) in millivolts. All AP
parameters were measured with the LabChart software.
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For further information, the amplitude was defined as
the voltage difference from the resting potential to the
peak of the first action potential. Duration was
measured at 50% of the amplitude of the action
potential. Afterhyperpolarization (AHP) was evaluated
as the change in membrane potential after the action
potential, where the potential becomes more negative
than the resting level. The AHP can be quantified by
determining its negative peak value relative to the
resting membrane potential after the action potential.
Statistical Analysis

Data were analyzed using LabChart software. The
numerical findings are presented as the mean =
standard error of the mean (SEM). Since the data were
parametric, a paired t-test was used to assess the
significance of the observed pre-post differences. The
statistical analyses were conducted using the SPSS
software, and P< 0.05 was considered to indicate
statistical significance.

Results

Effects of pre-treatment with melatonin on the
occurrence of epileptic activity induced by PTZ
The spontaneous rhythmic firing activity of identified
cells (F1 neurons) was initially recorded in normal
Ringer's solution, which served as the control group
(Figure 1A).

To study the effect of melatonin on the
electrophysiological properties of neurons in the
absence of any irritant, a solution of melatonin at a
concentration of 100 pM was added to the recording
chamber. The results demonstrated that melatonin did

not significantly influence the resting membrane
potential (RMP), action potential amplitude, or AHP
amplitude. However, it caused a reduction in action
potential frequency (p<0.01), indicating a decrease in
cell excitability. To address the question of whether
melatonin may have anticonvulsant prophylactic
effects, PTZ was applied to the bath (Figure 1B). In the
presence of melatonin, PTZ did not lead to an increase
in firing frequency or a change in RMP. However, it
significantly reduced AHP amplitude and increased
duration as detailed in Table 1.

Effect of melatonin on the epileptic activity induced
by PTZ

To gain a deeper insight into the therapeutic or
prophylactic effects of melatonin, the impact of this
compound was assessed by administering melatonin
(100 pM) following the introduction of PTZ (25 mM).
Initially, adding PTZ increased spontaneous activity
and firing frequency. This was demonstrated by
transitioning from regular spiking to burst firing
(Figure 1C). Initially, PTZ application significantly
increased the frequency of action potentials (APs),
accompanied by a decrease in afterhyperpolarisation
amplitude and a decrease in resting membrane
potential (Table 2). The administration of melatonin
after PTZ has been demonstrated to significantly
reduce the firing frequency of action potentials in PTZ-
induced epileptic conditions (P < 0.001). Furthermore,
melatonin augmented the amplitude of the AHP, which
was diminished by PTZ (P < 0.05), and also reversed
the alteration in resting membrane potential (P <
0.001). The findings are presented in Table 2.

Tablel. Effect of melatonin on resting membrane potential and some action potential characteristics on neurons before

PTZ administration.

Control
RMP(mV) -40.06 + 0.50
Amplitude (mV) 44.13 +0.97
Duration (ms) 1053+ 0.21
AHP amplitude (mV) 12,95+ 034
Frequency (Hz) 3.19+0.23

Melatonin MLT+PTZ
-39.53£0.27 -39.78+0.64
4243+085 43.17+0.88
10,58+ 0.42 14.85+ 0.914##
-11.88+0.33 -7.78+ 0.554#4#
2.68+ 0.14* 2,07+ 0.05#

The data presented represent the mean + standard error of the mean. (*)Sign indicates significant difference among
melatonin and control groups. (* P < 0.05). The symbol # represents a significantly difference between MLT and MLT +

PTZ groups (### P < 0.001, # P < 0.05).
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Table2. Effect of pentylenetetrazol and melatonin (following PTZ) on resting membrane potential and some action potential

characteristics, respectively.

Control
RMP(mV) -43.83 £ 0.34
Amplitude (mV) 47.04+0.95
Duration (ms) 11.32+0.23
AHP amplitude (mV) -11.47+0.31
Frequency (Hz) 1.87£0.07

PTZ PTZ+MLT
-38.24+0.45™ 42+ 0.84%
42.06+06™ 49.00+ 1.39%%
12.16+0.27 11.30+ 0.23*
-6.46 £ 0.26™ 7 +0.43°
508+ 0,12 152+ 0,13

Data presented are mean * standard error of the mean. The * symbol represents a statistically significant difference
between the PTZ and control groups (*** P < 0.001). The symbol # represents a statistically significant difference between

PTZ and PTZ+MLT groups (### P < 0.001, # P < 0.05).

Control
] i
Melatonin
-
PTZ

PTZ

Melatonin

20|_

1

Figurel. Spontaneous neuronal activity recorded in control group (A). The effect of melatonin on the AP of neurons in
normal Ringer's and the effect of PTZ on neuronal electrical activity when pretreated with melatonin (B). The effect of

melatonin after PTZ (C).

Discussion

Epilepsy is one of the most frequent types of
neurological disease (2). It is characterized by irregular
electrical activity in the brain, where ion channels are
critical in regulating neuronal excitability(19). Despite
the high prevalence and widespread use of anti-
epileptic medications, a definitive therapeutic approach
for epilepsy remains undiscovered (3). Many patients
with epilepsy struggle to achieve long-term seizure
control despite the availability of multiple medications.
This challenge is due to factors such as seizure
variability, drug resistance, delayed drug effects, and
patient adherence issues(20). Higher doses of

Volume 32, September-October 2024

medication, often required for effective treatment, can
cause side effects such as dizziness and cognitive
difficulties. Further complicating treatment is the need
for drugs to cross the blood-brain barrier(21).
Melatonin has attracted particular interest in this
context due to its anticonvulsant effects and positive
safety profile(22). To improve patient health and
safety, it's crucial to understand the function of
melatonin in epilepsy. The antioxidant properties of
melatonin and its low toxicity make it an appealing
option for use as an adjunctive therapy in epilepsy
treatment(3). Melatonin's ability to cross the blood-
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brain barrier provides neuroprotective benefits(23).
Given the existing evidence concerning the
relationship between melatonin and epilepsy (10, 12,
24), a considerable number of studies are currently
being conducted in this field. Nonetheless, its
prophylactic impact on the cellular level has not yet
been studied.In the first phase of this study, the
administration of melatonin before PTZ prevented the
induction of burst activity in response to PTZ. Ayar et
al. showed that melatonin can suppress nerve
excitability in cultured rat dorsal root ganglion (DRG)
neurons by inhibiting high-voltage activated calcium
channels (HVA CC) (25). In this regard, it was shown
that administration of MLT at pharmacological doses
suppressed multiple types of voltage-dependent Ca?*
and Na* channels in cultured cerebellar granule cells
(CGCs), independent of recognized MLT receptors.
Furthermore, characteristics and shape of evoked
action potentials (APs) were found to be significantly
altered (26). Also, melatonin did not induce a
significant change in RMP and prevented
depolarization of the RMP after PTZ application.
Studies using electrophysiological techniques have
shown that melatonin can affect the characteristics of
action potentials in neurons(27). Available evidence
suggests that melatonin's function in the central
nervous system includes influencing neuronal
excitability, potentially affecting conditions such as
epilepsy(27). By interacting with ion channels and
neurotransmitter receptors, it appears that melatonin
may alter the resting membrane potential, which is
essential for maintaining neuronal excitability and
preventing seizures.

In this study, melatonin also did not induce a
significant change in AHP in the non-epileptic state, in
contrast to PTZ applied in the second phase.
Afterhyperpolarization (AHP) is an important
electrical event that occurs after action potentials and
causes the membrane potential to become more
negative than its resting state(28, 29). Calcium-
activated potassium (KCa) channels significantly
influence this phenomenon, as their activation affects
the magnitude and duration of AHP(29). Calcium-
activated potassium channels are essential for
regulating neuronal excitability and membrane
potential(30). They are activated when intracellular
calcium levels rise, producing potassium efflux and
affecting the AHP that follows action potentials. In
various types of neurons, AHP helps regulate firing
frequency and prevents excessive neuronal excitability
that could lead to excitotoxicity(31). In this study,
melatonin did not influence Kca channels under non-
epileptic conditions, and the magnitude of AHP
remained unchanged. It is probably because of this
point that the influx of Ca?* through the voltage-gated
calcium channels, leading to the activation of Kca
currents, didn't happen in the non-epileptic cell.

In the second phase of this study, our experiments
demonstrated that the administration of PTZ (25 mM)
resulted in alterations to the AP's configuration and
firing pattern, leading to an increase in AP frequency.
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As demonstrated by Klee and colleagues, PTZ has been
shown to inhibit spike overshoot and cause frequent
firing (32). Based on the available evidence, it can be
postulated that the increase in AP frequency results
from an increase in positive ion entry or a decrease in
potassium current. Under physiological conditions, this
would reduce the time between action potentials.

The addition of melatonin (100 pM) following PTZ
treatment significantly decreased the firing frequency
of APs while increasing the amplitude of AHP, which
was decreased by PTZ, and re-increased the reduced
resting membrane potential. These results suggest that
melatonin may have the ability to alleviate neuronal
hyperexcitability. Xu et al. showed that melatonin
enhanced large conductance Ca?*-activated K* (BKca)
currents but didn't change voltage-gated K* currents
and also decreased the size of Ca?* sparks in whole-cell
recordings (33). All these can lead to a reduction in
hyperexcitability.

Conclusion

Based on these electrophysiological results, using
melatonin before PTZ prevented some of the severe
effects of PTZ on the cell. Specifically, prior to PTZ
exposure, melatonin administration significantly
reduced action potential firing frequency. These
findings suggest that melatonin may play a critical role
in modulating neuronal excitability and could have
therapeutic potential in managing epilepsy. Further
research is needed on the preventive effects of
melatonin using other electrophysiological
assessments such as EEG monitoring. The preventive
effect of melatonin on behavioral aspects of different
types of epilepsy is also recommended for further
research. Regarding the use of melatonin after PTZ, it
may have potential inhibitory and antiepileptic effects
and could be considered as an adjunctive treatment for

epilepsy.
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