دوره 33، شماره 159 - ( 6-1404 )                   جلد 33 شماره 159 صفحات 263-249 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shams F, Arjmand M, Zahiri E, Mehrad-Majd H. Prognostic Value of Circular RNAs in Digestive System Malignancies: Evidence From A Systematic Review and Meta-analysis. J Adv Med Biomed Res 2025; 33 (159) :249-263
URL: http://journal.zums.ac.ir/article-1-7658-fa.html
Prognostic Value of Circular RNAs in Digestive System Malignancies: Evidence From A Systematic Review and Meta-analysis. Journal of Advances in Medical and Biomedical Research. 1404; 33 (159) :249-263

URL: http://journal.zums.ac.ir/article-1-7658-fa.html


چکیده:   (130 مشاهده)

Dysregulation of circular RNAs (circRNAs) has been implicated in the development and progression of various cancers. However, their clinicopathological and prognostic value in digestive system malignancies remains unclear. This meta-analysis was performed to investigate the potential prognostic role of circRNAs in these cancers, classifying them as oncogenic or tumor-suppressor based on original study findings, while noting context-dependent roles. A comprehensive electronic literature search was conducted to identify eligible studies evaluating the prognostic significance of circRNAs in digestive cancers. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated to assess the associations between circRNA expression and overall survival (OS), as well as clinicopathological parameters. A total of 111 eligible studies were included in this meta-analysis. High expression of oncogenic circRNAs was significantly associated with worse OS (HR = 1.90, 96% CI: 1.72–2.22; P < 0.001), while elevated tumor-suppressor circRNAs showed a non-significant protective trend (HR = 0.74, 95% CI: 0.54–1.03; P > 0.05). Upregulated circRNAs were also significantly correlated with advanced TNM stage (OR = 2.68, 95% CI: 2.09–3.45) and larger tumor size (OR = 1.52, 95% CI: 1.16–1.98). Conversely, downregulated circRNAs showed an inverse association with advanced TNM stage (OR = 0.44, 95% CI: 0.25–0.79) and tumor size (OR = 0.51, 95% CI: 0.34–0.77). High heterogeneity (I² > 50%) was observed, likely due to diverse cancer types and detection methods, but sensitivity analyses confirmed the result robustness. Egger’s test indicated potential publication bias (P < 0.05). Mechanistically, circRNAs influence prognosis via miRNA sponging, RNA-binding protein interactions, and transcriptional regulation. This meta-analysis provides robust evidence that aberrant circRNA expression is associated with aggressive tumor characteristics and poor prognosis in digestive system cancers. However, clinical translation is limited by non-standardized detection methods and reliance on tissue-based assays. Large-scale, multicenter studies with standardized detection protocols and liquid biopsy validation are required to establish circRNAs as non-invasive prognostic biomarkers.

     
نوع مطالعه: مقاله مروری | موضوع مقاله: Medical Biology
دریافت: 1403/12/26 | پذیرش: 1404/5/20 | انتشار: 1404/7/7

فهرست منابع
1. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103-11. [DOI:10.1016/j.celrep.2014.12.002] [PMID]
2. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381-8. [DOI:10.1080/15476286.2015.1020271] [PMID] [PMCID]
3. Hentze MW, Preiss T. Circular RNAs: splicing's enigma variations. Embo J. 2013;32(7):923-5. [DOI:10.1038/emboj.2013.53] [PMID] [PMCID]
4. Wang M, Yang Y, Xu J, Bai W, Ren X, Wu H. CircRNAs as biomarkers of cancer: a meta-analysis. BMC Cancer. 2018;18(1):303. [DOI:10.1186/s12885-018-4213-0] [PMID] [PMCID]
5. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94. [DOI:10.1186/s12943-017-0663-2] [PMID] [PMCID]
6. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-57. [DOI:10.1261/rna.035667.112] [PMID] [PMCID]
7. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9(5):1966-80. [DOI:10.1016/j.celrep.2014.10.062] [PMID] [PMCID]
8. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-8. [DOI:10.1038/nature11928] [PMID]
9. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27(5):626-41. [DOI:10.1038/cr.2017.31] [PMID] [PMCID]
10. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. [DOI:10.3322/caac.21262] [PMID]
11. He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett. 2017;396:138-44. [DOI:10.1016/j.canlet.2017.03.027] [PMID]
12. Ren S, Xin Z, Xu Y, Xu J, Wang G. Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle. 2017;16(22):2204-11. [DOI:10.1080/15384101.2017.1346754] [PMID] [PMCID]
13. Sui W, Shi Z, Xue W, Ou M, Zhu Y, Chen J, et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep. 2017;37(3):1804-14. [DOI:10.3892/or.2017.5415] [PMID]
14. Huang YS, Jie N, Zou KJ, Weng Y. Expression profile of circular RNAs in human gastric cancer tissues. Mol Med Rep. 2017;16(3):2469-76. [DOI:10.3892/mmr.2017.6916] [PMID] [PMCID]
15. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215. [DOI:10.1038/ncomms11215] [PMID] [PMCID]
16. Li H, Hao X, Wang H, Liu Z, He Y, Pu M, et al. Circular RNA Expression Profile of Pancreatic Ductal Adenocarcinoma Revealed by Microarray. Cell Physiol Biochem. 2016;40(6):1334-44. [DOI:10.1159/000453186] [PMID]
17. Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget. 2016;7(49):80967-79. [DOI:10.18632/oncotarget.13134] [PMID] [PMCID]
18. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057. [DOI:10.1038/srep08057] [PMID] [PMCID]
19. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1-7. [DOI:10.1007/s12282-017-0793-9] [PMID]
20. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8(1):16. [DOI:10.1186/1745-6215-8-16] [PMID] [PMCID]
21. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-34. [DOI:10.1136/bmj.315.7109.629] [PMID] [PMCID]
22. Huang X, Zhang W, Zhang Z, Shi D, Wu F, Zhong B, et al. Prognostic Value of Programmed Cell Death 1 Ligand-1 (PD-L1) or PD-1 Expression in Patients with Osteosarcoma: A Meta-Analysis. J Cancer. 2018;9(14):2525-31. [DOI:10.7150/jca.25011] [PMID] [PMCID]
23. Chi S, Shen L, Hua T, Liu S, Zhuang G, Wang X, et al. Prognostic and diagnostic significance of lncRNAs expression in cervical cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(45):79061-72. [DOI:10.18632/oncotarget.18323] [PMID] [PMCID]
24. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088-101. [DOI:10.2307/2533446]
25. Borenstein M, Hedges L, Higgins J, H. R. Comprehensive Meta‐Analysis Software2021. pp. 425-41.
26. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882-93. [DOI:10.1016/j.jclinepi.2005.01.016] [PMID]
27. Liu YY, Zhang LY, Du WZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep. 2019;39(12):BSR20193045. [DOI:10.1042/BSR20193045] [PMID] [PMCID]
28. Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, et al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer. 2020;19(1):83. [DOI:10.1186/s12943-020-01196-4] [PMID] [PMCID]
29. Zeng X, Liu Y, Zhu H, Chen D, Hu W. Downregulation of miR-216a-5p by long noncoding RNA PVT1 suppresses colorectal cancer progression via modulation of YBX1 expression. Cancer Manag Res. 2019;11:6981-93. [DOI:10.2147/CMAR.S208983] [PMID] [PMCID]
30. Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One. 2015;10(6):e0131225. [DOI:10.1371/journal.pone.0131225] [PMID] [PMCID]
31. Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 2020;39(1):1. [DOI:10.1186/s13046-019-1487-2] [PMID] [PMCID]
32. Cheng F, Wang L, Zhang J. Circular RNA 0016788 displays as a biomarker for tumor progression and poor prognosis in surgical hepatocellular carcinoma patients. J Clin Lab Anal. 2020;34(7):e23300. [DOI:10.1002/jcla.23300] [PMID] [PMCID]
33. Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208-19. [DOI:10.1016/j.canlet.2016.12.006] [PMID]
34. Jia C, Yao Z, Lin Z, Zhao L, Cai X, Chen S, et al. circNFATC3 sponges miR-548I acts as a ceRNA to protect NFATC3 itself and suppressed hepatocellular carcinoma progression. J Cell Physiol. 2021;236(2):1252-69. [DOI:10.1002/jcp.29931] [PMID]
35. Guo W, Zhang J, Zhang D, Cao S, Li G, Zhang S, et al. Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget. 2017;8(29):48169-77. [DOI:10.18632/oncotarget.18327] [PMID] [PMCID]
36. Wang YG, Wang T, Ding M, Xiang SH, Shi M, Zhai B. hsa_circ_0091570 acts as a ceRNA to suppress hepatocellular cancer progression by sponging hsa-miR-1307. Cancer Lett. 2019;460:128-38. [DOI:10.3390/cancers11020128] [PMID]
37. Zhang C, Zhang C, Lin J, Wang H. Circular RNA Hsa_Circ_0091579 Serves as a Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. Cell Physiol Biochem. 2018;51(1):290-300. [DOI:10.1159/000495230] [PMID]
38. Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151-64. [DOI:10.1002/hep.29270] [PMID]
39. Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 2018;68(6):1214-27. [DOI:10.1016/j.jhep.2018.01.012] [PMID]
40. Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L, Ma Y. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun. 2018;499(4):1044-9. [DOI:10.1016/j.bbrc.2018.03.221] [PMID]
41. Weng Q, Chen M, Li M, Zheng YF, Shao G, Fan W, et al. Global microarray profiling identified hsa_circ_0064428 as a potential immune-associated prognosis biomarker for hepatocellular carcinoma. J Med Genet. 2019;56(1):32-8. [DOI:10.1136/jmedgenet-2018-105440] [PMID]
42. Yang N, Xu B, Kong P, Han M, Li B-h. Hsa_circ_0002320: a novel clinical biomarker for colorectal cancer prognosis. Medicine. 2020;99(28):e21224. [DOI:10.1097/MD.0000000000021224] [PMID] [PMCID]
43. Chen D, Zhang C, Lin J, Song X, Wang H. Screening differential circular RNA expression profiles reveal that hsa_circ_0128298 is a biomarker in the diagnosis and prognosis of hepatocellular carcinoma. Cancer Manag Res. 2018;10:1275-83. [DOI:10.2147/CMAR.S166740] [PMID] [PMCID]
44. Li J, Ni S, Zhou C, Ye M. The expression profile and clinical application potential of hsa_circ_0000711 in colorectal cancer. Cancer Manag Res. 2018;10:2777-84. [DOI:10.2147/CMAR.S172388] [PMID] [PMCID]
45. Yuan Y, Liu W, Zhang Y, Zhang Y, Sun S. CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31. Biochem Biophys Res Commun. 2018;503(2):870-5. [DOI:10.1016/j.bbrc.2018.06.089] [PMID]
46. Han L, Zhang X, Wang A, Ji Y, Cao X, Qin Q, et al. A Dual-Circular RNA Signature as a Non-invasive Diagnostic Biomarker for Gastric Cancer. Front Oncol. 2020;10:184. [DOI:10.3389/fonc.2020.00184]
47. Luo Z, Rong Z, Zhang J, Zhu Z, Yu Z, Li T, et al. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer. 2020;19(1):86. [DOI:10.1186/s12943-020-01203-8] [PMID] [PMCID]
48. Cai J, Chen Z, Zuo X. circSMARCA5 Functions as a Diagnostic and Prognostic Biomarker for Gastric Cancer. Dis Markers. 2019;2019:2473652. [DOI:10.1155/2019/2473652] [DOI:10.1155/2019/9356804] [PMID] [PMCID]
49. Jiang Y, Wang T, Yan L, Qu L. A novel prognostic biomarker for pancreatic ductal adenocarcinoma: hsa_circ_0001649. Gene. 2018;675:88-93. [DOI:10.1016/j.gene.2018.06.099] [PMID]
50. Zhou S, Wei J, Wang Y, Liu X. Cisplatin resistance-associated circRNA_101237 serves as a prognostic biomarker in hepatocellular carcinoma. Exp Ther Med. 2020;19(4):2733-40. [DOI:10.3892/etm.2020.8526] [PMID] [PMCID]
51. Sun C, Li G, Liu M. A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways. Onco Targets Ther. 2020(13):6171-80. [DOI:10.2147/OTT.S256238] [PMID] [PMCID]
52. Zhang L, Chang X, Zhai T, Yu J, Wang W, Du A, et al. A novel circular RNA, circ-ATAD1, contributes to gastric cancer cell progression by targeting miR-140-3p/YY1/PCIF1 signaling axis. Biochem Biophys Res Commun. 2020;525(4):841-9. [DOI:10.1016/j.bbrc.2020.02.100]
53. Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19(1):110. [DOI:10.1186/1476-4598-9-110] [DOI:10.1186/s12943-022-01586-w] [PMID] [PMCID]
54. Hu ZQ, Zhou SL, Li J, Zhou ZJ, Wang PC, Xin HY, et al. Circular RNA Sequencing Identifies CircASAP1 as a Key Regulator in Hepatocellular Carcinoma Metastasis. Hepatology. 2020;72(3):906-22. [DOI:10.1002/hep.31068] [PMID]
55. Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37(1):177. [DOI:10.1186/s13046-019-1168-1] [PMID] [PMCID]
56. Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7(1):5428. [DOI:10.1038/s41598-017-05432-8] [PMID] [PMCID]
57. Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2017;143(1):17-27. [DOI:10.1007/s00432-016-2256-7] [PMID] [PMCID]
58. Liu H, Xue L, Song C, Liu F, Jiang T, Yang X. Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p. Biochem Biophys Res Commun. 2018;503(4):2659-65. [DOI:10.1016/j.bbrc.2018.08.020] [PMID]
59. Cai H, Hu B, Ji L, Ruan X, Zheng Z. Hsa_circ_0103809 promotes cell proliferation and inhibits apoptosis in hepatocellular carcinoma by targeting miR-490-5p/SOX2 signaling pathway. Am J Transl Res. 2018;10(6):1690-702.
60. Gong Y, Mao J, Wu D, Wang X, Li L, Zhu L, et al. Circ-ZEB1.33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6. Cancer Cell Int. 2018;18:116. [DOI:10.1186/s12935-018-0602-3] [PMID] [PMCID]
61. Huang SS, Guo WX, Ren MS. Circular RNA hsa_circ_103809 promotes cell migration and invasion of gastric cancer cells by binding to microRNA-101-3p. Eur Rev Med Pharmacol Sci. 2020;24(11):6064-71.
62. Liu J, Liu H, Zeng Q, Xu P, Liu M, Yang N. Circular RNA circ-MAT2B facilitates glycolysis and growth of gastric cancer through regulating the miR-515-5p/HIF-1α axis. Cancer Cell Int. 2020;20:171. [DOI:10.1186/s12935-020-01256-1] [PMID] [PMCID]
63. Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, et al. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020;471:38-48. [DOI:10.1016/j.canlet.2019.11.038] [PMID]
64. Peng YK, Pu K, Su HX, Zhang J, Zheng Y, Ji R, et al. Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(3):1142-51.
65. Nanishi K, Konishi H, Shoda K, Arita T, Kosuga T, Komatsu S, et al. Circulating circERBB2 as a potential prognostic biomarker for gastric cancer: An investigative study. Cancer Sci. 2020;111(11):4177-86. [DOI:10.1111/cas.14645] [PMID] [PMCID]
66. Zhang Z, Wang C, Zhang Y, Yu S, Zhao G, Xu J. CircDUSP16 promotes the tumorigenesis and invasion of gastric cancer by sponging miR-145-5p. Gastric Cancer. 2020;23(3):437-48. [DOI:10.1007/s10120-019-01018-7] [PMID] [PMCID]
67. Zhang Z, Wu H, Chen Z, Li G, Liu B. Circular RNA ATXN7 promotes the development of gastric cancer through sponging miR-4319 and regulating ENTPD4. Cancer Cell Int. 2020;20:25. [DOI:10.1186/s12935-020-1106-5] [PMID] [PMCID]
68. Zhang Z, Yu X, Zhou B, Zhang J, Chang J. Circular RNA circ_0026359 Enhances Cisplatin Resistance in Gastric Cancer via Targeting miR-1200/POLD4 Pathway. Biomed Res Int. 2020;2020:5103272. [DOI:10.1155/2020/5103272] [PMID] [PMCID]
69. Li H, Yao G, Feng B, Lu X, Fan Y. Circ_0056618 and CXCR4 act as competing endogenous in gastric cancer by regulating miR-206. J Cell Biochem. 2018;119(11):9543-51. [DOI:10.1002/jcb.27271] [PMID]
70. Cai J, Chen Z, Wang J, Wang J, Chen X, Liang L, et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis. 2019;10(8):576. [DOI:10.1038/s41419-019-1814-8] [PMID] [PMCID]
71. Du W, Li D, Guo X, Li P, Li X, Tong S, et al. Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC. Artif Cells Nanomed Biotechnol. 2019;47(1):4120-30. [DOI:10.1080/21691401.2019.1671857] [PMID]
72. Liu M, Liu KD, Zhang L, Cai J, Yao HW, Bai YK, et al. Circ_0009910 regulates growth and metastasis and is associated with poor prognosis in gastric cancer. Eur Rev Med Pharmacol Sci. 2018;22(23):8248-56.
73. Lu J, Zhang PY, Xie JW, Wang JB, Lin JX, Chen QY, et al. Hsa_circ_0000467 promotes cancer progression and serves as a diagnostic and prognostic biomarker for gastric cancer. J Clin Lab Anal. 2019;33(3):e22726. [DOI:10.1002/jcla.22726] [PMID] [PMCID]
74. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, et al. Overexpression of Circular RNA ciRS-7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT Signaling Pathway. J Cell Biochem. 2018;119(1):440-6. [DOI:10.1002/jcb.26201] [PMID]
75. Wang S, Tang D, Wang W, Yang Y, Wu X, Wang L, et al. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol Cancer. 2019;18(1):162. [DOI:10.1186/s12943-018-0916-8] [PMID] [PMCID]
76. Wu L, Liu D, Yang Y. Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer. Exp Mol Pathol. 2019;110:104273. [DOI:10.1016/j.yexmp.2019.104273] [PMID]
77. Hao L, Rong W, Bai L, Cui H, Zhang S, Li Y, et al. Upregulated circular RNA circ_0007534 indicates an unfavorable prognosis in pancreatic ductal adenocarcinoma and regulates cell proliferation, apoptosis, and invasion by sponging miR-625 and miR-892b. J Cell Biochem. 2019;120(3):3780-9. [DOI:10.1002/jcb.27658] [PMID]
78. Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 2018;432:237-50. [DOI:10.1016/j.canlet.2018.04.035] [PMID]
79. Xu Y, Yao Y, Gao P, Cui Y. Upregulated circular RNA circ_0030235 predicts unfavorable prognosis in pancreatic ductal adenocarcinoma and facilitates cell progression by sponging miR-1253 and miR-1294. Biochem Biophys Res Commun. 2019;509(1):138-42. [DOI:10.1016/j.bbrc.2018.12.088] [PMID]
80. Wang X, Tao G, Huang D, Liang S, Zheng D. Circular RNA NOX4 promotes the development of colorectal cancer via the microRNA‑485‑5p/CKS1B axis. Oncol Rep. 2020;44(5):2009-20. [DOI:10.3892/or.2020.7758] [PMID] [PMCID]
81. Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, et al. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 2018;9(8):838. [DOI:10.1038/s41419-018-0852-y] [PMID] [PMCID]
82. Xiao YS, Tong HZ, Yuan XH, Xiong CH, Xu XY, Zeng YF. CircFADS2: A potential prognostic biomarker of colorectal cancer. Exp Biol Med (Maywood). 2020;245(14):1233-41. [DOI:10.1177/1535370220929965] [PMID] [PMCID]
83. Ma Z, Han C, Xia W, Wang S, Li X, Fang P, et al. circ5615 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. Cell Death Dis. 2020;11(5):356. [DOI:10.1038/s41419-020-2514-0] [PMID] [PMCID]
84. Tang X, Sun G, He Q, Wang C, Shi J, Gao L, et al. Circular noncoding RNA circMBOAT2 is a novel tumor marker and regulates proliferation/migration by sponging miR-519d-3p in colorectal cancer. Cell Death Dis. 2020;11(8):625. [DOI:10.1038/s41419-020-02869-0] [PMID] [PMCID]
85. Yong W, Zhuoqi X, Baocheng W, Dongsheng Z, Chuan Z, Yueming S. Hsa_circ_0071589 promotes carcinogenesis via the miR-600/EZH2 axis in colorectal cancer. Biomed Pharmacother. 2018;102:1188-94. [DOI:10.1016/j.biopha.2018.03.085] [PMID]
86. Jin C, Wang A, Liu L, Wang G, Li G. Hsa_circ_0136666 promotes the proliferation and invasion of colorectal cancer through miR-136/SH2B1 axis. J Cell Physiol. 2019;234(5):7247-56. [DOI:10.1002/jcp.27482] [PMID]
87. Fang G, Ye BL, Hu BR, Ruan XJ, Shi YX. CircRNA_100290 promotes colorectal cancer progression through miR-516b-induced downregulation of FZD4 expression and Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2018;504(1):184-9. [DOI:10.1016/j.bbrc.2018.08.152] [PMID]
88. Jin YD, Ren YR, Gao YX, Zhang L, Ding Z. Hsa_circ_0005075 predicts a poor prognosis and acts as an oncogene in colorectal cancer via activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23(8):3311-9.
89. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin Cancer Res. 2017;23(14):3918-28. [DOI:10.1158/1078-0432.CCR-16-2541] [PMID] [PMCID]
90. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9(4):417. [DOI:10.1038/s41419-018-0454-8] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb