Volume 33, Issue 160 (September & October 2025)                   J Adv Med Biomed Res 2025, 33(160): 167-178 | Back to browse issues page

Ethics code: IR.UMSHA.REC.1403.773

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Vosoughi M, Keshtpour Amlashi Z, Hamidi O, Sedighi Pashaki A, Nikzad S. Random Survival Forest Model for Predicting Survival in Non-Metastatic Breast Cancer. J Adv Med Biomed Res 2025; 33 (160) :167-178
URL: http://journal.zums.ac.ir/article-1-7665-en.html
1- Department of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
3- Department of Science, Hamedan University of Technology, Hamedan, Iran
4- Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , s.nikzad@umsha.ac.ir
Abstract:   (461 Views)

Background & Objective: Breast cancer is one of the most commonly diagnosed cancers in women worldwide and remains a major public health concern in both developed and developing countries. This study aimed to identify key prognostic factors influencing survival in patients with non-metastatic breast cancer. A predictive model was developed using the Random Survival Forest (RSF) method to enhance survival estimation and support clinical decision-making.
 Materials & Methods: In this retrospective cohort study, the medical records of 767 patients with non-metastatic breast cancer who were treated at the Mahdia Radiotherapy Center in Hamadan between 2006 and 2018 were reviewed. After excluding incomplete records, 442 patients remained for the final analysis. Demographic, clinical, and treatment-related data were extracted from the patients’ medical history. Both the Cox proportional hazards (PH) regression (Cox regression) model and the RSF model were applied to identify significant predictors of survival.
Results:  The mean age of the patients was 49.23 ± 10.85 years, and the mean survival time was 21.09 ± 2.27 months. One, three, and five-year survival rates were 98.8%, 97.5%, and 97.2%, respectively. Based on the RSF model, radiotherapy dose, recurrence, age, nodal stage (N), and overall stage were identified as the most influential predictors of survival. HER2 status, initial treatment approach, and surgical method were also included in the model. The RSF model achieved a C-index ranging from 0.63 to 0.73, outperforming the Cox regression model (C-index 0.54–0.66).
Conclusion:  The RSF model effectively identified key predictors of survival in non-metastatic breast cancer and may serve as a valuable tool for personalized clinical decision-making. These findings demonstrate the potential value of machine learning-based models in oncology research and patient management.

     
Type of Study: Original Research Article | Subject: Epidemiologic Studies
Received: 2025/04/11 | Accepted: 2025/10/10 | Published: 2025/11/11

References
1. Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451.
2. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun (Lond). 2021;41(11):1183-94. [DOI:10.1002/cac2.12207] [PMID] [PMCID]
3. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(6):524-41. [DOI:10.3322/caac.21754] [PMID]
4. Alizadeh M, Ghojazadeh M, Piri R, Mirza-Aghazadeh-Attari M, Mohammadi S, Naghavi-Behzad M. Age at Diagnosis of Breast Cancer in Iran: A Systematic Review and Meta-Analysis. Iran J Public Health. 2021;50(8):1564-76. [DOI:10.18502/ijph.v50i8.6802] [PMID] [PMCID]
5. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel). 2021;13(17):4287. [DOI:10.3390/cancers13174287] [PMID] [PMCID]
6. DeVita VT, Hellman S, Rosenberg SA. Cancer, principles and practice of oncology. 2nd ed. 1985. Philadelphia, PA, USA: Lippincott.
7. Poortmans PM, Collette S, Kirkove C, Van Limbergen E, Budach V, Struikmans H, et al. Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer. N Engl J Med. 2015;373(4):317-27. [DOI:10.1056/NEJMoa1415369] [PMID]
8. Faktor J, Knopfova L, Lapcik P, Janacova L, Paralova V, Bouchalova P, et al. Proteomics Identification and Validation of Desmocollin-1 and Catechol-O-Methyltransferase as Proteins Associated with Breast Cancer Cell Migration and Metastasis. Proteomics. 2019;19(21-22):e1900073. [DOI:10.1002/pmic.201900073] [PMID]
9. Desai AA, Hoskin TL, Day CN, Habermann EB, Boughey JC. Effect of Primary Breast Tumor Location on Axillary Nodal Positivity. Ann Surg Oncol. 2018;25(10):3011-8. [DOI:10.1245/s10434-018-6590-7] [PMID]
10. Karimi A, Moradi Z, Sayehmiri K, Delpisheh A, Sayehmiri F. Investigation of 1 to 10-year survival of breast cancer in Iranian women: a systematic review and meta-analysis. Iran J Obstet Gynecol Infertil. 2016;19(207):17-25.
11. Haghighat S. The effect of Reflexology on Quality of Life of breast cancer patients during chemotherapy. Iran J Breast Dis. 2013;6(1):23.
12. Cheon S, Agarwal A, Popovic M, Milakovic M, Lam M, Fu W, et al. The accuracy of clinicians' predictions of survival in advanced cancer: a review. Ann Palliat Med. 2016;5(1):22-9.
13. Kang HYJ, Ko M, Ryu KS. Prediction model for survival of younger patients with breast cancer using the breast cancer public staging database. Sci Rep. 2024;14(1):25723. [DOI:10.1038/s41598-024-76331-y] [PMID] [PMCID]
14. Cao J, Yuan P, Wang L, Wang Y, Ma H, Yuan X, et al. Clinical Nomogram for Predicting Survival of Esophageal Cancer Patients after Esophagectomy. Sci Rep. 2016;6:26684. [DOI:10.1038/srep26684] [PMID] [PMCID]
15. Amano K, Maeda I, Shimoyama S, Shinjo T, Shirayama H, Yamada T, et al. The accuracy of physicians' clinical predictions of survival in patients with advanced cancer. J Pain Symptom Manag. 2015;50(2):139-46. [DOI:10.1016/j.jpainsymman.2015.03.004] [PMID]
16. Nahm SH, Martin AJ, Clayton JM, Grimison P, Moth EB, Pavlakis N, et al. Accuracy of oncologists' estimates of expected survival time in advanced cancer. JNCI Cancer Spectr. 2023;7(6):pkad094. [DOI:10.1093/jncics/pkad094] [PMID] [PMCID]
17. Lambden J, Zhang B, Friedlander R, Prigerson HG. Accuracy of Oncologists' Life-Expectancy Estimates Recalled by Their Advanced Cancer Patients: Correlates and Outcomes. J Palliat Med. 2016;19(12):1296-303. [DOI:10.1089/jpm.2016.0121] [PMID] [PMCID]
18. Mazo C, Kearns C, Mooney C, Gallagher WM. Clinical Decision Support Systems in Breast Cancer: A Systematic Review. Cancers (Basel). 2020;12(2):369. [DOI:10.3390/cancers12020369] [PMID] [PMCID]
19. Baade PD, Fowler H, Kou K, Dunn J, Chambers SK, Pyke C, et al. A prognostic survival model for women diagnosed with invasive breast cancer in Queensland, Australia. Breast Cancer Res Treat. 2022;195(2):191-200. [DOI:10.1007/s10549-022-06682-5] [PMID] [PMCID]
20. Kleinbaum DG, Klein M. Survival Analysis A Self-Learning Text, Third Edition. 2012. New York, NY, US: Springer. [DOI:10.1007/978-1-4419-6646-9]
21. Najafi-Vosough R, Faradmal J, Tapak L, Alafchi B, Najafi-Ghobadi K, Mohammadi T. Prediction the survival of patients with breast cancer using random survival forests for competing risks. J Prev Med Hyg. 2022;63(2):E298-e303.
22. Tapak L, Sheikh V, Jenabi E, Khazaei S. Predictors of mortality among hemodialysis patients in Hamadan province using random survival forests. J Prev Med Hyg. 2020;61(3):E482-e8.
23. Rezaei M, Tapak L, Alimohammadian M, Sadjadi A, Yaseri M. Review of Random Survival Forest method. J Biostat Epidemiol. 2020;6(1):62-71. [DOI:10.18502/jbe.v6i1.4760]
24. Hamid O, Tapak M, Poorolajal J, Amini P, Tapak L. Application of random survival forest for competing risks in prediction of cumulative incidence function for progression to AIDS. Epidemiol Biostat Public Health. 2017;14(4):e12663-2. [DOI:10.2427/12663]
25. Pan Z-H, Chen K, Chen P-X, Zhu L-L, Li S-R, Li Q, et al. Development of a nomogram to predict overall survival among non-metastatic breast cancer patients in China: a retrospective multicenter study. J Bio-X Res. 2018;01:18-24. [DOI:10.1097/JBR.0000000000000008]
26. Sun W, Jiang YZ, Liu YR, Ma D, Shao ZM. Nomograms to estimate long-term overall survival and breast cancer-specific survival of patients with luminal breast cancer. Oncotarget. 2016;7(15):20496-506. [DOI:10.18632/oncotarget.7975] [PMID] [PMCID]
27. Paredes-Aracil E, Palazón-Bru A, Folgado-de la Rosa DM, Ots-Gutiérrez JR, Compañ-Rosique AF, Gil-Guillén VF. A scoring system to predict breast cancer mortality at 5 and 10 years. Sci Rep. 2017;7(1):415. [DOI:10.1038/s41598-017-00536-7] [PMID] [PMCID]
28. Meng X, Cai Y, Chang X, Guo Y. A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast cancer. Front Endocrinol (Lausanne). 2023;14:1119105. [DOI:10.3389/fendo.2023.1119105] [PMID] [PMCID]
29. Akrami M, Tahmasebi S, Shariat M, Moradi Ranjbar V, Keumarsi Z, Ghoddusi Johari M. An evaluation of the prognosis of breast cancer in patients older than 70 years: A report of Breast Cancer Registry of Shiraz University of Medical Sciences. Sadra Med J. 2021;9(4):353-66.
30. Nourelahi M, Zamani A, Talei A, Tahmasebi S. A model to predict breast cancer survivability using logistic regression. Middle East J Cancer. 2019;10(2):132-8.
31. Wang J, Chen L, Nie Y, Wu W, Yao Y. Nomogram for Predicting the Overall Survival of Patients With Breast Cancer With Pathologic Nodal Status N3. Clin Breast Cancer. 2020;20(6):e778-e85. [DOI:10.1016/j.clbc.2020.06.002] [PMID]
32. Wang J, Li Y, Fu W, Zhang Y, Jiang J, Zhang Y, et al. Prognostic nomogram based on immune scores for breast cancer patients. Cancer Med. 2019;8(11):5214-22. [DOI:10.1002/cam4.2428] [PMID] [PMCID]
33. Colleoni M, Bagnardi V, Rotmensz N, Dellapasqua S, Viale G, Pruneri G, et al. A risk score to predict disease-free survival in patients not achieving a pathological complete remission after preoperative chemotherapy for breast cancer. Ann Oncol. 2009;20(7):1178-84. [DOI:10.1093/annonc/mdn747] [PMID]
34. Bao X, Anastasov N, Wang Y, Rosemann M. A novel epigenetic signature for overall survival prediction in patients with breast cancer. J Transl Med. 2019;17(1):380. [DOI:10.1186/s12967-019-2126-6] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.