Volume 30, Issue 140 (May & June 2022)                   J Adv Med Biomed Res 2022, 30(140): 289-294 | Back to browse issues page


XML Print


1- Dept. of Anesthesia, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
2- Dept. of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran , dr_kumarss_amini@yahoo.com
3- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (84497 Views)

Background and Objective: Burn wound infections caused by Pseudomonas aeruginosa exhibiting β-lactam antibiotic resistance are one of the greatest challenges of antimicrobial treatment. In this context, P. aeruginosa strains harboring resistance mechanisms, such as production of extended-spectrum beta-lactamases have the highest clinical impact no the management of burn wound infections. The aim of this study was to investigate the antibacterial activity of iron oxide nanoparticles (IONPs) against P. aeruginosa harboring Cefotaximase-Munich (CTX-M) gene strains.
Materials and Methods: In this study, 60 isolates of P. aeruginosa were collected from burn wound infections referred to major hospitals of Tehran, Iran. All strains were assessed for the presence of beta-lactamase CTX-M gene by polymerase chain reaction. In- vitro antibacterial effect of IONPs against P. aeruginosa harboring CTX-M strains was assessed by microdilution assay and CTX-M gene expression profile using Real-time PCR.
Results: Our results demonstrated that 12/60 isolates were identified to be CTX-M-producing P. aeruginosa with multidrug resistance phenotypes. Our results indicated that the CTX-M gene frequency was 20%. We found that the expression of CTX-M gene in P. aeruginosa strains treated with IONPs (6.21±4.1) was much lower than that of non-treated (9.73±2.02) nanoparticles (P=0.000). Also, IONPs at 256 μg/ml had inhibitory effect on the growth of P. aeruginosa by suppressing CTX-M expression.
Conclusion: IONPs have potent antibacterial properties against P. aeruginosa through the suppression of CTX-M expression. According to our results, IONPs are promising tools for the development of new antimicrobial drugs against P. aeruginosa, since these composites have potential to decrease antibiotic resistance.

Full-Text [PDF 641 kb]   (41236 Downloads) |   |   Full-Text (HTML)  (1308 Views)  

 IONPs have potent antibacterial properties against P. aeruginosa through the suppression of CTX-M expression. According to our results, IONPs are promising tools for the development of new antimicrobial drugs against P. aeruginosa, since these composites have potential to decrease antibiotic resistance.


Type of Study: Original Article | Subject: Medical Biology
Received: 2021/01/11 | Accepted: 2021/03/1 | Published: 2022/04/1

References
1. Li J, Metruccio MM, Evans DJ, Fleiszig SM. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathogens. 2017;13(5):e1006392. [DOI:10.1371/journal.ppat.1006392] [PMID] [PMCID]
2. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogen Disease. 2013;67(3):159-73. [DOI:10.1111/2049-632X.12033] [PMID]
3. Polotto M, Casella T, de Lucca Oliveira MG, et al. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Diseases. 2012;12(1):176. [DOI:10.1186/1471-2334-12-176] [PMID] [PMCID]
4. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403-34. [DOI:10.1128/CMR.19.2.403-434.2006] [PMID] [PMCID]
5. Spalding C, Keen E, Smith DJ, Krachler A-M, Jabbari S. Mathematical modelling of the antibiotic-induced morphological transition of Pseudomonas aeruginosa. PLoS Comput Biol. 2018;14(2):e1006012. [DOI:10.1371/journal.pcbi.1006012] [PMID] [PMCID]
6. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5:277. [DOI:10.2147/IJN.S9220] [PMID] [PMCID]
7. Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Report. 2015;5:14813. [DOI:10.1038/srep14813] [PMID] [PMCID]
8. Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria-"a battle of the titans". Front Microbiol. 2018;9. [DOI:10.3389/fmicb.2018.01441] [PMID] [PMCID]
9. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed. 2012;7:6003. [DOI:10.2147/IJN.S35347] [PMID] [PMCID]
10. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227. [DOI:10.2147/IJN.S121956] [PMID] [PMCID]
11. Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415-27. [DOI:10.1039/C7CS00748E] [PMID] [PMCID]
12. Hafidh RR, Abdulamir AS, Vern LS, et al. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J. 2011;5:96. [DOI:10.2174/1874285801105010096] [PMID] [PMCID]
13. Current K, Dissanayake N, Obare S. Effect of iron oxide nanoparticles and amoxicillin on bacterial growth in the presence of dissolved organic carbon. Biomedicine. 2017;5(3):55. [DOI:10.3390/biomedicines5030055] [PMID] [PMCID]
14. Sun S, Zeng H, Robinson DB, et al. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126(1):273-9. [DOI:10.1021/ja0380852] [PMID]
15. Piri F, Ebrahimi MT, Amini K. Molecular investigation of CTX-M gene in extended spectrum β lactamases (ESBLs) producing Pseudomonas aeruginosa isolated from Iranian patients with burn wound infection. Arch Med Lab Sci. 2019;4(1).
16. Armijo LM, Jain P, Malagodi A, et al. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem? Colloidal Nanoparticles for Biomedical Applications X; 2015: International Society for Optics and Photonics. [DOI:10.1117/12.2085048]
17. Borcherding J, Baltrusaitis J, Chen H, et al. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environment Sci: Nano. 2014;1(2):123-32. [DOI:10.1039/c3en00029j] [PMID] [PMCID]
18. Haney CE. Effects on iron nanoparticles on Pseudomonas Aeruginosa biofilms: University of Dayton; 2011.
19. Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol. 2011;9(1):34. [DOI:10.1186/1477-3155-9-34] [PMID] [PMCID]
20. Umamaheswari K, Baskar R, Chandru K, Rajendiran N, Chandirasekar S. Antibacterial activity of gold nanoparticles and their toxicity assessment. BMC Infect Disease. 2014;14(S3):P64. [DOI:10.1186/1471-2334-14-S3-P64] [PMCID]
21. Grumezescu AM. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology: William Andrew; 2017.
22. Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol. 2012;25(7):1402-11. [DOI:10.1021/tx200513t] [PMID] [PMCID]
23. Touati D. Iron and oxidative stress in bacteria. Arch biochem Biophysic. 2000;373(1):1-6. [DOI:10.1006/abbi.1999.1518] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.