Volume 19, Issue 74 (3-2011)                   J Adv Med Biomed Res 2011, 19(74): 9-19 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khorsandi L, Bahramzadeh S, Hashemitabar M, Kalantar Mahdavi S R. Metformin Effect on the Mouse Pancreatic Langerhans Islets Volume. J Adv Med Biomed Res 2011; 19 (74) :9-19
URL: http://journal.zums.ac.ir/article-1-1411-en.html
1- Cell and Molecular Research Center, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran , Layasadat@yahoo.com
2- Cell and Molecular Research Center, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
Abstract:   (171305 Views)

Background and Objective: Metformin is a widely used medicine for treatment of type 2 diabetes. In this study, the effect of various doses of metformin on the mouse islets of langerhans volume was investigated.
Materials and methods: Twenty four C57BL/6 adult male mice weighting 30±5 gr were randomly divided into 4 groups. Normal saline was given to the control group (group 4) and the experimental groups (groups 1-3) received 75, 150 and 300 mg/kg metformin daily by intraperitoneal injection for seven days. One day after the last injection the mice were sacrificed by cervical dislocation and their pancreases were fixed in 10% formalin for histological studies. The volume of the islets of langerhans was estimated by using Cavalieri method.  
Results: Volume of the islets of langerhans in doses of 75 and 150 mg/kg Metformin showed a non-significant difference in comparison to control group (P>0.05). 300 mg/kg metformin treated mice showed a significant increase in islets of langerhans volume compared to the control group (P<0.05).
Conclusion: Metformin increases in the islets of langerhans volume in a dose-dependent manner. Increasing effects of Metformin on the islets of langerhans volume may be due to proliferation or hypertrophy of beta cells.

Full-Text [PDF 903 kb]   (160901 Downloads)    
Type of Study: Original Research Article |
Received: 2011/03/8 | Accepted: 2014/06/23 | Published: 2014/06/23

References
1. Guerra SD, Lupi R, Marselli L. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabets. 2005; 54: 727-35. [DOI:10.2337/diabetes.54.3.727] [PMID]
2. Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004; 47: 581-9. [DOI:10.1007/s00125-004-1336-4] [PMID]
3. Rhodes CJ. Type 2 Diabetes-a Matter of beta-Cell Life and Death? Science. 2005; 307: 380-4. [DOI:10.1126/science.1104345] [PMID]
4. Green BD, Irwin N, Duffy NA, Gault VA, O'Harte FPN, Flatt PR. Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. Euro J Pharmacol. 2006; 547: 192-9. [DOI:10.1016/j.ejphar.2006.07.043] [PMID]
5. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. Engl J Med. 1995; 333: 550-4. [DOI:10.1056/NEJM199508313330903] [PMID]
6. Richardson H, Campbell SC. Effects of rosiglitazone and metformin on pancreatic beta cell gene expression. Diabetologia. 2006; 49:685-96. [DOI:10.1007/s00125-006-0155-1] [PMID]
7. Hull RL, Shen ZP. Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes. 2005; 54: 2235-44. [DOI:10.2337/diabetes.54.7.2235] [PMID]
8. Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E. Effect of Metformin on Glucagon-Like Peptide 1 (GLP-1) and Leptin Levels in Obese Nondiabetic Subjects. Diabets Care. 2001; 24: 489-94. [DOI:10.2337/diacare.24.3.489] [PMID]
9. Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem. 1986; 261:11880-9.
10. Li Y, Hansotia T. Glucagon-like peptide-1 reseptor modulates beta cell apoptosis. Biol Chem. 2003; 278: 471-8. [DOI:10.1074/jbc.M209423200] [PMID]
11. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-Like Peptide-1 Induces Cell Proliferation and Pancreatic-Duodenum Homeobox-1 Expression and Increases Endocrine Cell Mass in the Pancreas of Old, Glucose-Intolerant Rat. Endocrinol. 2000; 141:4600-5. [DOI:10.1210/endo.141.12.7806] [PMID]
12. Howard CV, Reed MG. Unbiased stereology. Chester: Bios scientific. 1998; 39-45.
13. Gundersen HJ, Bendsten TF, Korbo L. Some new, simple and efficient stereological methods and theiruse in pathological research and diagnosis. Apmiss. 1988; 96: 391-4. [DOI:10.1111/j.1699-0463.1988.tb05320.x] [PMID]
14. Gundersen HJ, Bagger P, Bendtsen TF. The new stereological tools; Disector, fractionator; nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmiss. 1988; 96: 857-81. [DOI:10.1111/j.1699-0463.1988.tb00954.x] [PMID]
15. Corbett J, Serup P, Bonner-Weir S, Nielsen JH. B-Cell ontogeny: growth and death. Diabetologia. 1997; 40: B27-B32 [DOI:10.1007/BF03168183] [PMID]
16. Edvell A, Lindstrom P. Initiation of increased pancreatic islet growth in young normoglycemic mice. Endocrinol. 1999; 140: 778-83. [DOI:10.1210/endo.140.2.6514] [PMID]
17. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both b-Cell replication and neogenesis, resulting in increased b-Cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999; 48: 2270-6. [DOI:10.2337/diabetes.48.12.2270] [PMID]
18. Greig N, Halloway HW, De Ore K, et al. Once daily injections of Exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose levels. Diabetologia. 1999; 42: 45-50. [DOI:10.1007/s001250051111] [PMID]
19. Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B. Glucagon-Like Peptide-1 and Exendin-4 stimulate b-Cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes. 2001; 50: 1562-70. [DOI:10.2337/diabetes.50.7.1562] [PMID]
20. Couto MF, Minn AH, Pise-Masison CA, et al. Exenatide blocks JAK1-STAT1 in pancreatic beta cell. Metabolism. 2007; 56: 915-8. [DOI:10.1016/j.metabol.2007.02.004] [PMID]
21. Ling Z, Wu D, Zambre Y, et al. Glucagon-like peptide 1 receptor signaling influences topography of islet cells in mice. Virchows Arch. 2001; 438: 382-7. [DOI:10.1007/s004280000374] [PMID]
22. Guyton AC, Hall JE. Textbook of medical physiology‎. Mississippi: Saunders; 2005.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb