1. Bonnefond A, Froguel P, Vaxillaire M. The emerging genetics of type 2 diabetes. Trend Molec Med. 2010; 16(9): 407-16. [
DOI:10.1016/j.molmed.2010.06.004] [
PMID]
2. Sun X, Yu W, Hu C. Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. Bio Med Res Int. 2014; 2014: 1-15. [
DOI:10.1155/2014/926713] [
PMID] [
PMCID]
3. Chaudhury A, Duvoor C, Dendi VSR, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol. 2017; 8: 6. [
DOI:10.3389/fendo.2017.00006] [
PMID] [
PMCID]
4. Mahmazi S, Parivar K, Rahnema M, Ohadi M. Calreticulin novel mutations in type 2 diabetes mellitus. Int J Diabetes Develop Count. 2013; 33(4): 219-25. [
DOI:10.1007/s13410-013-0152-0]
5. Association AD. 2. Classification and diagnosis of diabetes. Diabetes Care. 2016; 41: S13-S27. [
DOI:10.2337/dc18-S002] [
PMID]
6. Lyssenko V, Groop L, Prasad RB. Genetics of type 2 diabetes: it matters from which parent we inherit the risk. Rev Diabet Stud. 2015; 12(3-4): 233-42. [
DOI:10.1900/RDS.2015.12.233] [
PMID] [
PMCID]
7. Neve B, Le Bacquer O, Caron S, et al. Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia. 2014; 57(4): 785-96. [
DOI:10.1007/s00125-013-3154-z] [
PMID]
8. Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocrine Rev. 2016; 37(3): 254-77. [
DOI:10.1210/er.2015-1146] [
PMID]
9. Kasper J, Milton A, Smith A, et al. Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of Ecto-nucleotide pyrophosphatase phosphodiesterase-1. Int J Dev Neuro Sci. 2018; 64: 48-53. [
DOI:10.1016/j.ijdevneu.2017.03.011] [
PMID] [
PMCID]
10. Fajar JK. The association of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) K121Q gene polymorphism with the risk of type 2 diabetes mellitus in European, American, and African populations: A meta-analysis. J Health Sci. 2016; 6(2): 76-86. [
DOI:10.17532/jhsci.2016.358]
11. Costanzo BV, Trischitta V, Di Paola R, et al. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121). Diabetes. 2001; 50(4): 831-36. [
DOI:10.2337/diabetes.50.4.831] [
PMID]
12. Bhambhani G, Bhambhani RG, Thakor NC. Lipid profile of patients with diabetes mellitus: a cross sectional study. Int J Res Med Sci. 2015; 3(11): 3292-95. [
DOI:10.18203/2320-6012.ijrms20151179]
13. Daniel MJ. Lipid management in patients with type 2 diabetes. Am Health Drug Bene fits. 2011; 4(5): 312-22.
14. Li Y-y. ENPP1 K121Q polymorphism and type 2 diabetes mellitus in the Chinese population: a meta-analysis including 11 855 subjects. Metabolism. 2012; 61(5): 625-33. [
DOI:10.1016/j.metabol.2011.10.002] [
PMID]
15. Bhatti JS, Bhatti G, Mastana S, Ralhan S, Joshi A, Tewari R. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes in North Indians. Molec Cell Biochem. 2010; 345(1-2): 249-57. [
DOI:10.1007/s11010-010-0579-2] [
PMID]
16. Kang JY, Sung SH, Lee YJ, Choi TI, Choi SJ. Impact of ENPP1 K121Q on change of insulin resistance after web-based intervention in korean men with diabetes and impaired fasting glucose. J Korean Med Sci. 2014; 29(10): 1353-59. [
DOI:10.3346/jkms.2014.29.10.1353] [
PMID] [
PMCID]
17. Matsha T, Fanampe B, Yako Y, et al. Association of the ENPP1 rs997509 polymorphism with obesity in South African mixed ancestry learners. East Afr Med J. 2010; 87(8): 323-9.
18. Prakash J, Mittal B, Awasthi S, Agarwal C, Srivastava N. K121Q ENPP1/PC-1 gene polymorphism is associated with insulin resistance in a North Indian population. J Genetic. 2013; 92(3): 571-76. [
DOI:10.1007/s12041-013-0287-2]
19. Sortica DA, Buffon MP, Souza BM, et al. Association between the ENPP1 K121Q polymorphism and risk of diabetic kidney disease: A systematic review and meta-analysis. PloS one. 2015; 10(3): e0118416. [
DOI:10.1371/journal.pone.0118416] [
PMID] [
PMCID]
20. Sumi S, Ramachandran S, RamanKutty V, et al. ENPP1 121Q functional variant enhances susceptibility to coronary artery disease in South Indian patients with type 2 diabetes mellitus. Mol Cell Biochem. 2017; 435(1-2): 67-72. [
DOI:10.1007/s11010-017-3057-2] [
PMID]
21. Hansson O, Zhou Y, Renström E, Osmark P. Molecular function of TCF7L2: Consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Current Diabete Report. 2010; 10(6): 444-51. [
DOI:10.1007/s11892-010-0149-8] [
PMID]
22. Shokouhi S, Delpisheh A, Haghani K, Mahdizadeh M, Bakhtiyari S. Association of rs7903146, rs12255372, and rs290487 polymorphisms in TCF7L2 gene with type 2 diabetes in an Iranian Kurdish ethnic group. Clin Lab. 2014; 60(8): 1269-76. [
DOI:10.7754/Clin.Lab.2013.130809]
23. Palizban A, Nikpour M, Salehi R, Maracy M-R. Association of a common variant in TCF7L2 gene with type 2 diabetes mellitus in a Persian population. Clin Experiment Med. 2012; 12(2): 115-19. [
DOI:10.1007/s10238-011-0144-7] [
PMID]
24. Tong Y, Lin Y, Zhang Y, et al. Association between TCF7L2gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large human genome epidemiology (HuGE) review and meta-analysis. BMC Med Genet. 2009; 10: 15. [
DOI:10.1186/1471-2350-10-15] [
PMID] [
PMCID]
25. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics. 2006; 38(3): 320-23. [
DOI:10.1038/ng1732] [
PMID]
26. Javorský M, Babjaková E, Klimčáková L, et al. Association between TCF7L2 genotype and glycemic control in diabetic patients treated with gliclazide. Int J Endocrinol. 2013; 2013: 374858. [
DOI:10.1155/2013/374858] [
PMID] [
PMCID]
27. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. New Eng J Med. 2006; 355(3): 241-50. [
DOI:10.1056/NEJMoa062418] [
PMID] [
PMCID]