1. de Smet GH, Kroese LF, Menon AG, et al. Oxygen therapies and their effects on wound healing. Wound Repair Regenerat. 2017;25(4):591-608. [
DOI:10.1111/wrr.12561] [
PMID]
2. Tardáguila‐García A, García‐Morales E, García‐Alamino JM, Álvaro‐Afonso FJ, Molines‐Barroso RJ, Lázaro‐Martínez JL. Metalloproteinases in chronic and acute wounds: A systematic review and meta‐analysis. Wound Repair Regenerat. 2019;27(4):415-20. [
DOI:10.1111/wrr.12717] [
PMID]
3. Tahergorabi Z, Khazaei M. Imbalance of angiogenesis in diabetic complications: the mechanisms. Int J Prevent Med. 2012;3(12):827. [
DOI:10.4103/2008-7802.104853] [
PMID] [
PMCID]
4. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347-58. [
DOI:10.1016/j.jss.2008.04.023] [
PMID] [
PMCID]
5. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Communicat Signal. 2016;10(4):347-54. [
DOI:10.1007/s12079-016-0352-8] [
PMID] [
PMCID]
6. Geng H, Song H, Qi J, Cui D. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res Lett. 2011;6(1):312. [
DOI:10.1186/1556-276X-6-312] [
PMID] [
PMCID]
7. Briquez PS, Hubbell JA, Martino MM. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care. 2015;4(8):479-89. [
DOI:10.1089/wound.2014.0603] [
PMID] [
PMCID]
8. Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Materials. 2017;9(10):e435-e. [
DOI:10.1038/am.2017.171]
9. Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharmaceut Res. 2003;20(8):1103-12. [
DOI:10.1023/A:1025034925152] [
PMID]
10. Praveen G, Sreerekha P, Menon D, Nair SV, Chennazhi KP. Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents. Nanotechnol. 2012;23(9):095102. [
DOI:10.1088/0957-4484/23/9/095102] [
PMID]
11. Brannigan RP, Dove AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci. 2017;5(1):9-21. [
DOI:10.1039/C6BM00584E] [
PMID]
12. Chen S, Li X, Yang Z, et al. A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids and Surfaces B: Biointerfaces. 2014;113:125-33. [
DOI:10.1016/j.colsurfb.2013.08.041] [
PMID]
13. Dideikin AT, Vul AY. Graphene oxide and derivatives: the place in graphene family. Front Physics. 2019;6:149. [
DOI:10.3389/fphy.2018.00149]
14. Mahmoudi N, Eslahi N, Mehdipour A, et al. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med. 2017;28(5):73. [
DOI:10.1007/s10856-017-5874-y] [
PMID]
15. Lu B, Li T, Zhao H, et al. Graphene-based composite materials beneficial to wound healing. Nanoscale. 2012;4(9):2978-82. [
DOI:10.1039/c2nr11958g] [
PMID]
16. Khan MS, Abdelhamid HN, Wu H-F. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids and Surfaces B: Biointerfaces. 2015;127:281-91. [
DOI:10.1016/j.colsurfb.2014.12.049] [
PMID]
17. Ebrahimizadeh W, Gargari SLMM, Javidan Z, Rajabibazl M. Production of novel VHH nanobody inhibiting angiogenesis by targeting binding site of VEGF. App Biochem Biotechnol. 2015;176(7):1985-95. [
DOI:10.1007/s12010-015-1695-y] [
PMID]
18. Afarideh B, Rajabibazl M, Omidi M, Yaghmaee B, Rahimpour A, Khodabakhshi R. Anticancer activity of graphene oxide/5-FU on CT26 Ds-Red adenocarcinoma cell line. Orient J Chem. 2018;34(4):2002-7. [
DOI:10.13005/ojc/3404038]
19. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose. 2014;21(1):433-47. [
DOI:10.1007/s10570-013-0109-y]
20. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third international AAAI conference on weblogs and social media; 2009.
21. Davis FM, Kimball A, Boniakowski A, Gallagher K. Dysfunctional wound healing in diabetic foot ulcers: new crossroads. Curr Diabet Report. 2018;18(1):2. [
DOI:10.1007/s11892-018-0970-z] [
PMID]
22. Masters KS. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromolec Biosci. 2011;11(9):1149-63. [
DOI:10.1002/mabi.201000505] [
PMID]
23. Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. 2016;7:185. [
DOI:10.3389/fphar.2016.00185] [
PMID] [
PMCID]
24. Borselli C, Ungaro F, Oliviero O, et al. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res A. 2010;92(1):94-102. [
DOI:10.1002/jbm.a.32332] [
PMID]
25. Szunerits S, Boukherroub R. Antibacterial activity of graphene-based materials. J Mater Chem B. 2016;4(43):6892-912. [
DOI:10.1039/C6TB01647B] [
PMID]