دوره 29، شماره 136 - ( 6-1400 )                   جلد 29 شماره 136 صفحات 278-271 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari N, Rahimi M R, Mahmazi S, Rahnema M. Effect of Eight Weeks Caffeine Supplementation and High Fat Diet on PGC1-α, Fndc-5 and UCP-1 Gene Expression in Male Wistar Rats. J Adv Med Biomed Res 2021; 29 (136) :271-278
URL: http://journal.zums.ac.ir/article-1-6136-fa.html
Effect of Eight Weeks Caffeine Supplementation and High Fat Diet on PGC1-α, Fndc-5 and UCP-1 Gene Expression in Male Wistar Rats. Journal of Advances in Medical and Biomedical Research. 1400; 29 (136) :271-278

URL: http://journal.zums.ac.ir/article-1-6136-fa.html


چکیده:   (128934 مشاهده)

Background and Objective: Today, obesity is one of the most important health problems in the world. The purpose of this study was to determine the effects of caffeine and high fat diet on expression of PGC1-α, Fndc-5 and UCP-1 genes in male Wistar rats.
Materials and Methods: To study the aim of this survey, 40 male Wistar rats were divided into four equal groups (n=10 in each group), including: 1) control, 2) high fat diet (HFD), 3) caffeine and 4) high fat diet and caffeine (HFD+caffeine) groups. Oral gavage of caffeine was performed in a dose of 6 mg/kg body weight. PGC1-α and Fndc-5 mRNA of muscles, and UCP-1 mRNA of subcutaneous fatty tissue were measured using real-time polymerase chain reaction (qPCR). One-way ANOVA test was used to analyze the data.
Results: The results of the present study showed that caffeine prevented overweight and increased PGC1-α, Fndc-5 and UCP-1 gene expression in the caffeine group. There were no significant differences in target genes expression, between the HFD+caffeine and the control group.
Conclusion: Based on our results, caffeine is a preventive factor for obesity. It can increase the converting process of white adipose tissue to the brown.

متن کامل [PDF 595 kb]   (140858 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Life science
دریافت: 1399/5/2 | پذیرش: 1399/12/24 | انتشار: 1400/1/15

فهرست منابع
1. Swinburn BA, Kraak VI, Allender S, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. The Lancet. 2019;393(10173):791-846. [DOI:10.1016/S0140-6736(18)32822-8]
2. Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Report. 2013;33:(5). e00065 [DOI:10.1042/BSR20130046]
3. Norouzirad R, González-Muniesa P, Ghasemi A. Hypoxia in obesity and diabetes: potential therapeutic effects of hyperoxia and nitrate. Oxid Med Cell Longev. 2017;2017: 5350267. [DOI:10.1155/2017/5350267]
4. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242-56. [DOI:10.1016/j.cell.2007.10.004]
5. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. The lancet Diabet Endocrinol. 2013;1(4):353-60. [DOI:10.1016/S2213-8587(13)70055-X]
6. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8. [DOI:10.1038/nature10777]
7. Shanshan Gao F, Li H, Huang Y, Liu Y, Chen Y. Effects and molecular mechanism of GSTIrisin on lipolysis and autocrine function in T3-L1 adipocytes. PLoS ONE. 11(1):e0147480 [DOI:10.1371/journal.pone.0147480]
8. Panati K, Suneetha Y, Narala V. Irisin/FNDC5-An updated review. Eur Rev Med Pharmacol Sci. 2016;20(4):689-97.
9. Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 2013;141(2):1530-5. [DOI:10.1016/j.foodchem.2013.03.085]
10. Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: A review. Sport Med. 2019;49(1):17-30. [DOI:10.1007/s40279-018-0997-y]
11. Keisler BD, Armsey TD. Caffeine as an ergogenic aid. Curr Sport Med Report. 2006;5(4):215-9. [DOI:10.1097/01.CSMR.0000306510.57644.a7]
12. DeSisso TD, Gerst JW, Carnathan PD, et al. Effect of caffeine on metabolic and cardiovascular responses to submaximal exercise: Boys Versus Men2429 2: 00 PM-2: 15 PM. Med Sci Sport Exercise. 2005;37(5):S465. [DOI:10.1249/00005768-200505001-02429]
13. Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000;49(4):467-72. [DOI:10.1016/S0026-0495(00)80010-4]
14. Matsuda Y, Kobayashi M, Yamauchi R, et al. Coffee and caffeine improve insulin sensitivity and glucose tolerance in C57BL/6J mice fed a high-fat diet. Biosci, Biotechnol, Biochem. 2011;75(12):2309-15. [DOI:10.1271/bbb.110452]
15. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean Red Ginseng on high fat diet-induced obesity in the rat. J Pharmacol Sci. 2005:0501140017. [DOI:10.1254/jphs.FP0040184]
16. Tam BT, Pei XM, Yung BY, et al. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Arch Europ J Physiol. 2015;467(12):2555-69. [DOI:10.1007/s00424-015-1721-5]
17. Chen WP, Ho BY, Lee CL, Lee CH, Pan TM. Red mold rice prevents the development of obesity, dyslipidemia and hyperinsulinemia induced by high-fat diet. Int J Obesit. 2008;32(11):1694-704. [DOI:10.1038/ijo.2008.156]
18. Rahman HA, Sahib NG, Saari N, et al. Anti-obesity effect of ethanolic extract from Cosmos caudatus Kunth leaf in lean rats fed a high fat diet. BMC Complement Alternat Med. 2017;17(1):122. [DOI:10.1186/s12906-017-1640-4]
19. Picchi MG, Mattos AMd, Barbosa MR, et al. A high-fat diet as a model of fatty liver disease in rats. Acta cirurgica brasileira. 2011;26:25-30. [DOI:10.1590/S0102-86502011000800006]
20. Takami H, Nakamoto M, Uemura H, et al. Inverse correlation between coffee consumption and prevalence of metabolic syndrome: baseline survey of the Japan multi-institutional collaborative cohort (J-MICC) study in Tokushima, Japan. J Epidemiol. 2013;23(1):12-20. [DOI:10.2188/jea.JE20120053]
21. Kobayashi M, Matsuda Y, Iwai H, et al. Coffee improves insulin-stimulated Akt phosphorylation in liver and skeletal muscle in diabetic KK-Ay mice. J Nutr Sci Vitaminol. 2012;58(6):408-14. [DOI:10.3177/jnsv.58.408]
22. Huvanandana J, Thamrin C, McEwan AL, Hinder M, Tracy MB. Cardiovascular impact of intravenous caffeine in preterm infants. Acta Paediatrica. 2019;108(3):423-9. [DOI:10.1111/apa.14382]
23. Baalash A, Shafik NM, Abo Zeid AA, Ebeid AM. Effects of caffeine intake on oxido/inflammatory axis in rat model of non-alcoholic fatty liver disease. Bullet Egypt Soc Physiol Sci. 2017;37(1):45-58. [DOI:10.21608/besps.2017.8225]
24. Yehya N. Mechanism, efficacy, and safety of an ephedrine, caffeine, and aspirin combination in the treatment of obesity. Nutr Bytes. 2001;7(1).
25. Olcina GJ, Muñoz D, Timón R, et al. Effect of caffeine on oxidative stress during maximum incremental exercise. J Sport Sci Med. 2006;5(4):621.
26. Bruce CR, Anderson ME, Fraser SF, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sport Exercise. 2000;32(11):1958-63. [DOI:10.1097/00005768-200011000-00021]
27. Lanzi CR, Perdicaro DJ, Tudela JG, et al. Grape pomace extract supplementation activates FNDC5/irisin in muscle and promotes white adipose browning in rats fed a high-fat diet. Food & Func. 2020;11(2):1537-46. [DOI:10.1039/C9FO02463H]
28. El-Desoky F, Gaber AE-H, Holah NS, et al. Protective effect of caffeine and curcumin versus silymarin on nonalcoholic steatohepatitis in rats. Menoufia Med J. 2020;33(1):196. [DOI:10.4103/mmj.mmj_253_18]
29. Lin JD. Minireview: the PGC-1 coactivator networks: chromatin-remodeling and mitochondrial energy metabolism. Molec Endocrinol. 2009;23(1):2-10. [DOI:10.1210/me.2008-0344]
30. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nature Rev Endocrinol. 2014;10(1):24. [DOI:10.1038/nrendo.2013.204]
31. Ye L, Kleiner S, Wu J, et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 2012;151(1):96-110. [DOI:10.1016/j.cell.2012.08.034]
32. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277-359. [DOI:10.1152/physrev.00015.2003]
33. Lafontan M, Barbe P, Galitzky J, et al. Adrenergic regulation of adipocyte metabolism. Human Reproduct. 1997;12(suppl_1):6-20. [DOI:10.1093/humrep/12.suppl_1.6]
34. Schutz Ya, Flatt J, Jéquier E. Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity. Am J Clin Nutr. 1989;50(2):307-14. [DOI:10.1093/ajcn/50.2.307]
35. Hursel R, Viechtbauer W, Dulloo AG, et al. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta‐analysis. Obesit Rev. 2011;12(7):e573-e81. [DOI:10.1111/j.1467-789X.2011.00862.x]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb