دوره 30، شماره 139 - ( 11-1400 )                   جلد 30 شماره 139 صفحات 100-86 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karbalaee Hasani A, Nejad Ebrahimi Z, Mahami N, Alizadeh M, Rasooli Z, Hemmati M. A Review of Bisphenol A Effects on White Adipose Tissue and Its Correlation with Various Cancers. J Adv Med Biomed Res 2022; 30 (139) :86-100
URL: http://journal.zums.ac.ir/article-1-6287-fa.html
A Review of Bisphenol A Effects on White Adipose Tissue and Its Correlation with Various Cancers. Journal of Advances in Medical and Biomedical Research. 1400; 30 (139) :86-100

URL: http://journal.zums.ac.ir/article-1-6287-fa.html


چکیده:   (94362 مشاهده)

Bisphenol A, as a primary substance used for making many plastic devices enters the body through various routes such as skin penetration, oral ingestion, and inhalation and is among the chemicals leading to the disruption of the endocrine system. It exerts its destructive effects on the various tissues through estrogen, androgen, thyroid, pregnane X, and aryl hydrocarbon receptors. This review study was conducted to evaluate the pharmacological effects of bisphenol and its signaling pathways especially in the adipose tissue. Studies have shown that the disruption in the level of adipocytokines can contribute to the formation and progression of the chronic diseases such as cancers. Decreased level of adiponectin (as an adipokine secreted from white adipose tissue) and increased levels of IL-6, TNF-α, and leptin are among the disruptions caused by bisphenol which can develop different types of cancers. Accordingly, it seems that the use of bisphenol and contact with it should be reconsidered with regard to its destructive effects on the endocrine system.

متن کامل [PDF 705 kb]   (47354 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: Life science
دریافت: 1399/8/17 | پذیرش: 1399/12/25 | انتشار: 1400/11/11

فهرست منابع
1. Marino M, Pellegrini M, La Rosa P, Acconcia F. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids. 2012;77(10):910-7. [DOI:10.1016/j.steroids.2012.02.019] [PMID]
2. Geens T, Aerts D, Berthot C, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725-40. [DOI:10.1016/j.fct.2012.07.059] [PMID]
3. Staples CA, Dorn PB, Klecka GM, O'Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998 Apr;36(10):2149-73. [DOI:10.1016/S0045-6535(97)10133-3]
4. Ma Y, Liu H, Wu J, et al.The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 2019;176:108575. [DOI:10.1016/j.envres.2019.108575] [PMID]
5. Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinol. 2006;147(6 Suppl):S56-69. [DOI:10.1210/en.2005-1159] [PMID]
6. Beausoleil C, Emond C, Cravedi JP, et al.Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol Cell Endocrinol. 2018; 475 (5):4-9. [DOI:10.1016/j.mce.2018.02.001] [PMID]
7. Crain DA, Eriksen M, Iguchi T, et al. An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol. 2007;24(2):225-39. [DOI:10.1016/j.reprotox.2007.05.008] [PMID]
8. Abraham A, Chakraborty P. A review on sources and health impacts of bisphenol A. Rev Environ Health. 2020;35(2):201-10. [DOI:10.1515/reveh-2019-0034] [PMID]
9. Shin BS, Kim CH, Jun YS, et al. Physiologically based pharmacokinetics of bisphenol A. J Toxicol Environ Health A. 2004;67(23-24):1971-85. [DOI:10.1080/15287390490514615] [PMID]
10. Hines CJ, Christianson AL, Jackson MV, et al. An evaluation of the relationship among urine, air, and hand measures of exposure to bisphenol A (BPA) in US manufacturing workers. Ann Work Expo Health. 2018; 62(7):840-51. [DOI:10.1093/annweh/wxy042] [PMID] [PMCID]
11. Wang M, Rang O, Liu F, et al. A systematic review of metabolomics biomarkers for Bisphenol A exposure. Metabolomics. 2018;14(4):1-9. [DOI:10.1007/s11306-018-1342-z] [PMID]
12. Ho KL, Yuen KK, Yau MS, et al. Glucuronide and sulfate conjugates of bisphenol A: Chemical synthesis and correlation between their urinary levels and plasma bisphenol A content in voluntary human donors. Arch Environ Contam Toxicol. 2017;73(3):410-20. [DOI:10.1007/s00244-017-0438-1] [PMID]
13. Thayer KA, Doerge DR, Hunt D, et al. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int. 2015;83:107-15. [DOI:10.1016/j.envint.2015.06.008] [PMID] [PMCID]
14. Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of estrogenic and androgenic activities for bisphenol A-like chemicals (BPs): in vitro estrogen and androgen receptors transcriptional activation, gene regulation, and binding profiles. Toxicol Sci. 2019;172(1):23-37. [DOI:10.1093/toxsci/kfz173] [PMID] [PMCID]
15. De Coster S, Van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health. 2012;2012. [DOI:10.1155/2012/713696] [PMID] [PMCID]
16. Pereira-Fernandes A, Demaegdt H, Vandermeiren K, et al. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PloS One. 2013;8(10):e77481. [DOI:10.1371/journal.pone.0077481] [PMID] [PMCID]
17. Kuiper GG, Gustafsson JÅ. The novel estrogen receptor-β subtype: potential role in the cell-and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett. 1997;410(1):87-90. [DOI:10.1016/S0014-5793(97)00413-4]
18. Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol Cell Endocrinol. 2009;304(1-2):49-54. [DOI:10.1016/j.mce.2009.02.022] [PMID] [PMCID]
19. Acconcia F, Pallottini V, Marino M. Molecular mechanisms of action of BPA. DOSE-RESPONSE. 2015;13(4):1559325815610582. [DOI:10.1177/1559325815610582] [PMID] [PMCID]
20. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect.2005;113(4):431-9. [DOI:10.1289/ehp.7505] [PMID] [PMCID]
21. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165-90. [DOI:10.1146/annurev.physiol.70.113006.100518] [PMID]
22. Nesan D, Sewell LC, Kurrasch DM. Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Horm behav. 2018;101:50-8. [DOI:10.1016/j.yhbeh.2017.12.001] [PMID]
23. Sohoni P, Sumpter JP. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998;158(3):327-40. [DOI:10.1677/joe.0.1580327] [PMID]
24. Pellegrini M, Accoccia F, Marino M. Endocrine disruptors. a gender affair. Open Access Biol. 2013;1:5.
25. Ariemma F, D'Esposito V, Liguoro D, et al. Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One. 2016;11(3):e0150762. [DOI:10.1371/journal.pone.0150762] [PMID] [PMCID]
26. Zoeller RT. New insights into thyroid hormone action in the developing brain: the importance of T3 degradation. Endocrinol. 2010;151(11):5089-91. [DOI:10.1210/en.2010-0926] [PMID]
27. Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals. Mol Endocrinol. 2006;20(3):475-82. [DOI:10.1210/me.2004-0513] [PMID]
28. Sui Y, Ai N, Park SH, et al. Bisphenol A and its analogues activate human pregnane X receptor. Environ Health Perspect. 2012;120(3):399-405. [DOI:10.1289/ehp.1104426] [PMID] [PMCID]
29. Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology.Biol Chem. 2010;391(11):1235-48. [DOI:10.1515/bc.2010.128] [PMID]
30. Rubin BS, Soto AM. Bisphenol A: perinatal exposure and body weight. Mol Cell Endocrinol. 2009;304(1-2):55-62. [DOI:10.1016/j.mce.2009.02.023] [PMID] [PMCID]
31. Le Corre L, Besnard P, Chagnon MC. BPA, an energy balance disruptor. Crit Rev Food Sci Nutr. 2015;55(6):769-77. [DOI:10.1080/10408398.2012.678421] [PMID]
32. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116(12):1642-7. [DOI:10.1289/ehp.11537] [PMID] [PMCID]
33. Pallottini V, Bulzomi P, Galluzzo P, Martini C, Marino M. Estrogen regulation of adipose tissue functions: involvement of estrogen receptor isoforms. Infect Disord Drug Targets. 2008;8(1):52-60. [DOI:10.2174/187152608784139631] [PMID]
34. Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction. 2017;153(4):R133-49. [DOI:10.1530/REP-16-0417] [PMID]
35. Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol. 2012;354(1-2):74-84. [DOI:10.1016/j.mce.2012.01.001] [PMID] [PMCID]
36. Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-α in male adipose tissue. Mol Cell Endocrinol. 2001;178(1-2):147-54. [DOI:10.1016/S0303-7207(01)00414-2]
37. Muraki K, Okuya S, Tanizawa Y. Estrogen receptor α regulates insulin sensitivity through IRS-1 tyrosine phosphorylation in mature 3T3-L1 adipocytes. Endocrine J. 2006:0609250044-0609250044. [DOI:10.1507/endocrj.K06-005] [PMID]
38. Garcia Dos Santos E, Dieudonne MN, Pecquery R, Le Moal V, Giudicelli Y, Lacasa D. Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response element binding protein in rat white adipocytes. Endocrinol. 2002;143(3):930-40. [DOI:10.1210/endo.143.3.8678] [PMID]
39. Dieudonne MN, Leneveu MC, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors α and β in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286(3):C655-61. [DOI:10.1152/ajpcell.00321.2003] [PMID]
40. Lee MJ, Lin H, Liu CW, et al. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am J Physiol Cell Physiol. 2008;294(6):C1542-51. [DOI:10.1152/ajpcell.00403.2007] [PMID]
41. Angle BM, Do RP, Ponzi D, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256-68. [DOI:10.1016/j.reprotox.2013.07.017] [PMID] [PMCID]
42. Kim JH, Cho HT, Kim YJ. The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocrine J. 2014:EJ14-0262.
43. Cust AE, Kaaks R, Friedenreich C, et al. Plasma adiponectin levels and endometrial cancer risk in pre-and postmenopausal women. J Clin Endocrinol Metab. 2007;92(1):255-63. [DOI:10.1210/jc.2006-1371] [PMID]
44. Gulen ST, Karadag F, Karul AB, et al. Adipokines and systemic inflammation in weight-losing lung cancer patients. Lung. 2012;190(3):327-32. [DOI:10.1007/s00408-011-9364-6] [PMID]
45. Jasinski-Bergner S, Kielstein H. Adipokines regulate the expression of tumor-relevant MicroRNAs. Obes Facts. 2019;12(2):211-25. [DOI:10.1159/000496625] [PMID] [PMCID]
46. Di Zazzo E, Polito R, Bartollino S, et al. Adiponectin as link factor between adipose tissue and cancer. Int J Mol Sci. 2019;20(4):839. [DOI:10.3390/ijms20040839] [PMID] [PMCID]
47. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 2019;92:121-35. [DOI:10.1016/j.metabol.2018.11.001] [PMID]
48. Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H. Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb. 2007:0710100002-0710100002. [DOI:10.5551/jat.E486] [PMID]
49. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A. 2004;101(28):10308-13. [DOI:10.1073/pnas.0403382101] [PMID] [PMCID]
50. Katira A, Tan PH. Adiponectin and its receptor signaling: an anti-cancer therapeutic target and its implications for anti-tumor immunity. Expert Opin Ther Targets. 2015;19(8):1105-25. [DOI:10.1517/14728222.2015.1035710] [PMID]
51. Kelesidis I, Kelesidis T, Mantzoros C. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94(9):1221-5. [DOI:10.1038/sj.bjc.6603051] [PMID] [PMCID]
52. Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345(1):271-9. [DOI:10.1016/j.bbrc.2006.04.076] [PMID]
53. Van Sinderen ML, Steinberg GR, Jrgensen SB, et al. Effects of estrogens on adipokines and glucose homeostasis in female aromatase knockout mice. PloS One. 2015;10(8):e0136143. [DOI:10.1371/journal.pone.0136143] [PMID] [PMCID]
54. Watson CS, Bulayeva NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007;72(2):124-34. [DOI:10.1016/j.steroids.2006.11.002] [PMID] [PMCID]
55. Fenichel P, Chevalier N, Brucker-Davis F. Bisphenol A: an endocrine and metabolic disruptor. Ann Endocrinol (Paris). 2013;74(3):211-20. [DOI:10.1016/j.ando.2013.04.002] [PMID]
56. Ropero AB, Alonso-Magdalena P, Ripoll C, Fuentes E, Nadal A. Rapid endocrine disruption: environmental estrogen actions triggered outside the nucleus. J Steroid Biochem Mol Biol. 2006;102(1-5):163-9. [DOI:10.1016/j.jsbmb.2006.09.019] [PMID]
57. Trujillo ME, Scherer PE. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257(2):167-75. [DOI:10.1111/j.1365-2796.2004.01426.x] [PMID]
58. Wright HM, Clish CB, Mikami T, et al. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation. J Biol Chem. 2000;275(3):1873-7. [DOI:10.1074/jbc.275.3.1873] [PMID]
59. Hiroi T, Okada K, Imaoka S, Osada M, Funae Y. Bisphenol A binds to protein disulfide isomerase and inhibits its enzymatic and hormone-binding activities. Endocrinol. 2006;147(6):2773-80. [DOI:10.1210/en.2005-1235] [PMID]
60. Lin SY, Huang SC, Sheu WH. Circulating adiponectin concentrations were related to free thyroxine levels in thyroid cancer patients after thyroid hormone withdrawal. Metabolism. 2010;59(2):195-9. [DOI:10.1016/j.metabol.2009.06.032] [PMID]
61. Tworoger SS, Eliassen AH, Kelesidis T, et al. Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab. 2007;92(4):1510-6. [DOI:10.1210/jc.2006-1975] [PMID]
62. Soliman PT, Wu D, Tortolero Luna G, et al. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006;106(11):2376-81. [DOI:10.1002/cncr.21866] [PMID]
63. Perrier S, Jarde T. Adiponectin, an anti-carcinogenic hormone? A systematic review on breast, colorectal, liver and prostate cancer. Curr Med Chem. 2012;19(32):5501-12. [DOI:10.2174/092986712803833137] [PMID]
64. Petridou ET, Mitsiades N, Gialamas S, et al. Circulating adiponectin levels and expression of adiponectin receptors in relation to lung cancer: two case-control studies. Oncology. 2007;73(3-4):261-9. [DOI:10.1159/000127424] [PMID]
65. Bub JD, Miyazaki T, Iwamoto Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem Biophys Res Commun. 2006;340(4):1158-66. [DOI:10.1016/j.bbrc.2005.12.103] [PMID]
66. Li G, Cong L, Gasser J, Zhao J, Chen K, Li F. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7-dependency on the cAMP/protein kinase-A pathway. Nutr Cancer. 2011;63(1):80-8. [DOI:10.1080/01635581.2010.516472] [PMID]
67. Yildirim A, Bilici M, Cayir K, Yanmaz V, Yildirim S, Tekin SB. Serum adiponectin levels in patients with esophageal cancer. Jpn J Clin Oncol. 2009 ;39(2):92-6. [DOI:10.1093/jjco/hyn143] [PMID]
68. Hebbard L, Ranscht B. Multifaceted roles of adiponectin in cancer. Best Pract Res Clin Endocrinol Metab. 2014;28(1):59-69. [DOI:10.1016/j.beem.2013.11.005] [PMID] [PMCID]
69. VanSaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013;19(8):1926-32. [DOI:10.1158/1078-0432.CCR-12-0930] [PMID] [PMCID]
70. Mitsiades N, Pazaitou-Panayiotou K, Aronis KN, et al. Circulating adiponectin is inversely associated with risk of thyroid cancer: in vivo and in vitro studies. J Clin Endocrinol Metab. 2011;96(12):E2023-8. [DOI:10.1210/jc.2010-1908] [PMID] [PMCID]
71. Byeon JS, Jeong JY, Kim MJ, et al. Adiponectin and adiponectin receptor in relation to colorectal cancer progression. Int J Cancer. 2010;127(12):2758-67. [DOI:10.1002/ijc.25301] [PMID]
72. Spyridopoulos TN, Petridou ET, Skalkidou A, Dessypris N, Chrousos GP, Mantzoros CS. Low adiponectin levels are associated with renal cell carcinoma: a case-control study. Int J Cancer. 2007;120(7):1573-8. [DOI:10.1002/ijc.22526] [PMID]
73. Maffei M, Fei H, Lee GH, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci U S A. 1995;92(15):6957-60. [DOI:10.1073/pnas.92.15.6957] [PMID] [PMCID]
74. Vuletic MS, Milosevic VS, Jancic SA, Zujovic JT, Krstic MS, Vukmirovic FC. Clinical significance of Leptin receptor (LEPR) and Endoglin (CD105) expressions in colorectal adenocarcinoma. J BUON. 2019;24(6):2448-57.
75. Volberg V, Harley K, Calafat AM, et al. Maternal bisphenol a exposure during pregnancy and its association with adipokines in Mexican-American children. Environ Mol Mutagen. 2013;54(8):621-8.78. [DOI:10.1002/em.21803] [PMID] [PMCID]
76. Uddin S, Bu R, Ahmed M, et al. Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Mol Cancer. 2009;8(1):74.79. [DOI:10.1186/1476-4598-8-74] [PMID] [PMCID]
77. Li F, Cao Y, Li J, et al. The clinical significance of serum adipocytokines level in patients with lung cancer. J Thorac Dis. 2019;11(8):3547-55.80. [DOI:10.21037/jtd.2019.07.66] [PMID] [PMCID]
78. Chen C, Chang YC, Liu CL, Chang KJ, Guo C. Leptin-induced growth of human ZR-75-1 breast cancer cells is associated with up-regulation of cyclin D1 and c-Myc and down-regulation of tumor suppressor p53 and p21 WAF1/CIP1. Breast Cancer Res Treat. 2006;98(2):121-32.81. [DOI:10.1007/s10549-005-9139-y] [PMID]
79. Barrea L, Gallo M, Ruggeri RM, et al. Nutritional status and follicular-derived thyroid cancer: An update. Crit Rev Food Sci Nutr. 2021;61(1):25-59.82. [DOI:10.1080/10408398.2020.1714542] [PMID]
80. Li F, Zhao S, Guo T, Li J, Gu C. The nutritional cytokine leptin promotes NSCLC by activating the PI3K/AKT and MAPK/ERK pathways in NSCLC cells in a paracrine manner. Biomed Res Int. 2019;2019:2585743.83. [DOI:10.1155/2019/2585743] [PMID] [PMCID]
81. Machinal-Quélin F, Dieudonné MN, Pecquery R, Leneveu MC, Giudicelli Y. Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine. 2002;18(2):179-84.84. [DOI:10.1385/ENDO:18:2:179]
82. Chevalier N, Fénichel P. Bisphenol A: Targeting metabolic tissues. Rev Endocr Metab Disord. 2015;16(4):299-309.85. [DOI:10.1007/s11154-016-9333-8] [PMID]
83. Ptak A, Rak-Mardyla A, Gregoraszczuk EL. Cooperation of bisphenol A and leptin in inhibition of caspase-3 expression and activity in OVCAR-3 ovarian cancer cells. Toxicol In Vitro. 2013;27(6):1937-43.86. [DOI:10.1016/j.tiv.2013.06.017] [PMID]
84. Ptak A, Gregoraszczuk EL. Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell. Toxicol Lett. 2012 ;210(3):332-7.87. [DOI:10.1016/j.toxlet.2012.02.003] [PMID]
85. Hoffmann M, Fiedor E, Ptak A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol Lett. 2017;269:15-22.88. [DOI:10.1016/j.toxlet.2017.01.006] [PMID]
86. Tsai CF, Chen JH, Wu CT, Chang PC, Wang SL, Yeh WL. Induction of osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule secreted from cancer cells. Ther Adv Med Oncol. 2019;11:1758835919846806.89. [DOI:10.1177/1758835919846806] [PMID] [PMCID]
87. Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-perez RR. Oncogenic role of leptin and Notch interleujin-1 leptin crosstalk outcome in cancer. World J Methodol. 2016; 26(6):43-55. - [DOI:10.5662/wjm.v6.i1.43] [PMID] [PMCID]
88. Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553-72. [DOI:10.1007/s13277-016-5098-7] [PMID]
89. Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64(6):1403-15. [DOI:10.1016/j.jhep.2016.02.004] [PMID]
90. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457-64. [DOI:10.1084/jem.20090207] [PMID] [PMCID]
91. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26(1):54-74. [DOI:10.1016/j.smim.2014.01.001] [PMID]
92. Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci. 2019;20(3):676. [DOI:10.3390/ijms20030676] [PMID] [PMCID]
93. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle. 2005;4(2):217-20. [DOI:10.4161/cc.4.2.1413] [PMID]
94. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link?. Biochem Pharmacol. 2006;72(11):1605-21. [DOI:10.1016/j.bcp.2006.06.029] [PMID]
95. Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front biosci. 2008;13(2):5094-107. [DOI:10.2741/3066] [PMID]
96. Balkwill F. TNF-α in promotion and progression of cancer. Cancer Metastasis Re. 2006;25(3):409-16. [DOI:10.1007/s10555-006-9005-3] [PMID]
97. Xu LL, Shi CM, Xu GF, et al. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem Biophys. 2014;70(2):771-6. [DOI:10.1007/s12013-014-9980-x] [PMID]
98. Ahmed RG. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem Toxicol. 2016;95:168-74. [DOI:10.1016/j.fct.2016.06.017] [PMID]
99. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res. 2002;62(22):6682-7.
100. Zagozda M, Sarnecka AK, Staszczak Z, Nowak-Niezgoda M, Durlik M. Correlation of TNF-α and TGF-β polymorphisms with protein levels in pancreatic ductal adenocarcinoma and colorectal cancer. Contemp Oncol (Pozn). 2019;23(4):214-219. [DOI:10.5114/wo.2019.91537] [PMID] [PMCID]
101. Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 2017;24(1):90. [DOI:10.1186/s12929-017-0398-9] [PMID] [PMCID]
102. Al-Lamki RS, Mayadas TN. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87(2):281-96. [DOI:10.1038/ki.2014.285] [PMID]
103. Ho MY, Tang SJ, Chuang MJ, et al. TNF-α induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res. 2012;10(8):1109-19. [DOI:10.1158/1541-7786.MCR-12-0160] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb