دوره 31، شماره 145 - ( 12-1401 )                   جلد 31 شماره 145 صفحات 176-170 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mozaffarinia A, Gol A, Mohammadzadeh A. Hepatoprotective Properties of Cuminum cyminum Seeds Powder as Post-Treatment for Acetaminophen-Induced Injury. J Adv Med Biomed Res 2023; 31 (145) :170-176
URL: http://journal.zums.ac.ir/article-1-6660-fa.html
Hepatoprotective Properties of Cuminum cyminum Seeds Powder as Post-Treatment for Acetaminophen-Induced Injury. Journal of Advances in Medical and Biomedical Research. 1401; 31 (145) :170-176

URL: http://journal.zums.ac.ir/article-1-6660-fa.html


چکیده:   (10951 مشاهده)

Background and Objective: Acetaminophen overdose can result in hepatic injury, mainly through oxidative stress. We investigated the protective effect of Cuminum cyminum (C. cyminum) seeds powder after acetaminophen administration.
Materials and Methods: In this study, 30 male rats were allocated into five groups of six in number as follows: control, acetaminophen (A), and acetaminophen + C. cyminum 200, 400, and 800 mg/kg (A+C). After 24 hours of fasting, the control group received distilled water, and groups A and A+C received acetaminophen 1,000 mg/kg orally through gavage. Six hours later, the control group and group A were given distilled water, and groups A+C received C. cyminum 200, 400, and 800 mg/kg by gavage. Twelve hours after the second gavage, hepatic markers of oxidative stress and serum ALT and AST were assessed.
Results: In group A, the activities of serum ALT and AST, the concentration of hepatic malondialdehyde and H2O2 increased, and peroxidase & catalase activities decreased substantially compared to the control group. C. cyminum administration in groups A+Cs resulted in the return of these changes toward group control.
Conclusion: These results suggest that C. cyminum, due to its flavonoid and polyphenol contents, could diminish hepatic injury induced by acetaminophen.

متن کامل [PDF 419 kb]   (7812 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Health improvement strategies
دریافت: 1400/10/21 | پذیرش: 1401/5/29 | انتشار: 1401/12/22

فهرست منابع
1. Suk KT, Kim DJ. Drug-induced liver injury: present and future. Clin Molec Hepatol. 2012;18(3):249. [DOI:10.3350/cmh.2012.18.3.249] [PMID] [PMCID]
2. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Translat Hepatol. 2016;4(2):131. [DOI:10.14218/JCTH.2015.00052]
3. Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced liver injury: from animal models to humans. J Clin Translat Hepatol. 2014;2(3):153. [DOI:10.14218/JCTH.2014.00014]
4. Wang Z, Hao W, Hu J, et al. Maltol improves APAP-induced hepatotoxicity by inhibiting oxidative stress and inflammation response via NF-κB and PI3K/Akt signal pathways. Antioxidants. 2019;8(9):395. [DOI:10.3390/antiox8090395] [PMID] [PMCID]
5. Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Adverse Drug React. 2010:369-405. [DOI:10.1007/978-3-642-00663-0_12] [PMID] [PMCID]
6. Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metabo Rev. 2012;44(1):88-106. [DOI:10.3109/03602532.2011.602688] [PMID] [PMCID]
7. Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016;10:148-56. [DOI:10.1016/j.redox.2016.10.001] [PMID] [PMCID]
8. Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Translat Res. 2017;3(1):157. [DOI:10.18053/jctres.03.2017S1.002] [PMID] [PMCID]
9. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molec Aspect Med. 2006;27(1):1-93. [DOI:10.1016/j.mam.2005.07.008] [PMID]
10. Lee HS. Cuminaldehyde: aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. seeds. J Agri Food Chem. 2005;53(7):2446-50. [DOI:10.1021/jf048451g] [PMID]
11. Aruna K, Rukkumani R, Varma PS, Menon VP. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity. Phytother Research. 2005;19(5):416-21. [DOI:10.1002/ptr.1596] [PMID]
12. Gohari AR, Saeidnia S. A review on phytochemistry of Cuminum cyminum seeds and its standards from field to market. Pharmacogn J. 2011;3(25):1-5. [DOI:10.5530/pj.2011.25.1]
13. Elhabib E, Homeida M, Adam S. Effect of combined paracetamol and Cuminum cyminum or Nigella sativa use in wister rats. J Pharmacol Toxicol. 2007;2(7):653-9. [DOI:10.3923/jpt.2007.653.659]
14. Mushtaq A, Ahmad M, Jabeen Q, Saqib A, Wajid M, Akram MA. Hepatoprotective investigations of Cuminum cyminum dried seeds in nimesulide intoxicated albino rats by phytochemical and biochemical methods. Inter J Pharm Pharmaceut Sci. 2014;6(4).
15. Ebada ME. Essential oils of green cumin and chamomile partially protect against acute acetaminophen hepatotoxicity in rats. Anais da Academia Brasileira de Ciências. 2018;90(2):2347-58. [DOI:10.1590/0001-3765201820170825] [PMID]
16. Panche A, Diwan A, Chandra S. Flavonoids: an overview. J Nutr Sci. 2016;5. [DOI:10.1017/jns.2016.41] [PMID] [PMCID]
17. Jepson MA, Davis MJ, Horton AA, Walker DG. Histochemical and biochemical observations on the cytotoxicity of paracetamol and its effects on glycogen metabolism in rat liver. Toxicol. 1987;47(3):325-37. [DOI:10.1016/0300-483X(87)90062-X] [PMID]
18. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analyti Biochemist. 1978;86(1):271-8. [DOI:10.1016/0003-2697(78)90342-1] [PMID]
19. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 2000;151(1):59-66. [DOI:10.1016/S0168-9452(99)00197-1]
20. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [DOI:10.1016/S0076-6879(84)05016-3] [PMID]
21. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992;98(4):1222-7. [DOI:10.1104/pp.98.4.1222] [PMID] [PMCID]
22. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014. [DOI:10.1155/2014/360438] [PMID] [PMCID]
23. Dönmez M, Uysal B, Poyrazoğlu Y, et al. PARP inhibition prevents acetaminophen-induced liver injury and increases survival rate in rats. Turk J Med Sci. 2015;45(1):18-26. [DOI:10.3906/sag-1308-48] [PMID]
24. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Molec Med. 2010;14(4):840-60. [DOI:10.1111/j.1582-4934.2009.00897.x] [PMID] [PMCID]
25. Singh RP, Gangadharappa H, Mruthunjaya K. Cuminum cyminum-A popular spice: An updated review. Pharmacog J. 2017;9(3). [DOI:10.5530/pj.2017.3.51]
26. Jaeschke H, Ramachandran A. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React Oxyg Species (Apex). 2018;5(15):145. [DOI:10.20455/ros.2018.835] [PMID]
27. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Analysis. 2002;10(3):3. [DOI:10.38212/2224-6614.2748]
28. Heck DE, Shakarjian M, Kim HD, Laskin JD, Vetrano AM. Mechanisms of oxidant generation by catalase. Ann New York Acad Sci. 2010;1203:120. [DOI:10.1111/j.1749-6632.2010.05603.x] [PMID] [PMCID]
29. Gupta K, Kumar N, Dahiya DS. Changes in structural carbohydrates and minerals of developing fenugreek (Trigonella foenum graecum L.) leaves. Int J Trop Agri. 1998;16(1-4):221-7.
30. Kaur D, Sharma R. International Journal of Research in Pharmacy and Science. 2012.
31. Nwanna E, Oboh G. Antioxidant and hepatoprotective properties of polyphenol extracts from Telfairia occidentalis (fluted pumpkin) leaves on acetaminophen induced liver damage. Pakistan J Biol Sci. 2007;10(16):2682-7. [DOI:10.3923/pjbs.2007.2682.2687] [PMID]
32. Tai M, Zhang J, Song S, et al. Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse. Int Immunopharmacol. 2015;27(1):164-70. [DOI:10.1016/j.intimp.2015.05.009] [PMID]
33. Yang J, Wang XY, Xue J, Gu ZL, Xie ML. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity. Food Funct. 2013;4(6):939-43. [DOI:10.1039/c3fo60071h] [PMID]
34. El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agri Food Chem. 2010;58(14):8231-7. [DOI:10.1021/jf101202x] [PMID]
35. Barakat L, Mohamed M. Ginger, cumin and mustard seeds modulate acetaminophen-induced acute hepatic injury in rats. J Appl Sci Res. 2011;7:1368-74.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb