دوره 31، شماره 146 - ( 4-1402 )                   جلد 31 شماره 146 صفحات 220-210 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaeifard M, Ahangar H, Gohari S, Oveisi M, Maleki M, Reshadmanesh T, et al . Assessment of Machine Learning Approaches to Predict in-Hospital Mortality in Patients Underwent Prosthetic Heart Valve Replacement Surgery. J Adv Med Biomed Res 2023; 31 (146) :210-220
URL: http://journal.zums.ac.ir/article-1-6918-fa.html
Assessment of Machine Learning Approaches to Predict in-Hospital Mortality in Patients Underwent Prosthetic Heart Valve Replacement Surgery. Journal of Advances in Medical and Biomedical Research. 1402; 31 (146) :210-220

URL: http://journal.zums.ac.ir/article-1-6918-fa.html


چکیده:   (3044 مشاهده)

Background and Objective: Machine learning and artificial intelligence are useful tools to analyze data with multiple variables. It has been shown that the prediction models obtained by Machine learning have better performance than the conventional statistical methods. This study was aimed to assess the risk factors and determine the best machine learning prediction model/s for in-hospital mortality among patients who underwent prosthetic valve replacement surgery.
Materials and Methods: In this retrospective cross-sectional study, patient’s pre-operative, intra-operative and post-operative data underwent univariate analysis. Feature importance determination was carried out using algorithms including principal component analysis (PCA), support vector machine (SVM), random forest (RF) model-based, and recursive feature elimination (RFE).  Then, 13 machine learning classifiers were implemented for in-hospital prediction model.
Results: The In-hospital mortality rate was 6.36%. Data from 2455 patients underwent final analysis. The machine learning results revealed that among pre-operative features, Adaptive boost (AB) and RF classifiers (AUC: 0.82±0.033; 0.78±0.028, respectively); among intra-operative features, AB and K-nearest neighbors (KNN) classifiers (AUC: 0.68±0.014); among postoperative features, AB and RF classifiers (AUC: 0.9±0.1; 0.88±0.095, respectively); and among all features, AB and LR classifiers (AUC: 0.93±0.049; 0.93±0.055, respectively) had the best performance in prediction of in-hospital mortality.
Conclusion: The AB classifier was determined as the best model in prediction of in-hospital mortality in all 4 datasets.

متن کامل [PDF 1092 kb]   (1734 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Clinical medicine
دریافت: 1401/9/14 | پذیرش: 1402/1/30 | انتشار: 1402/4/5

فهرست منابع
1. Kim MS, Cho SJ, Park SJ, et al. Frequency and clinical associating factors of valvular heart disease in asymptomatic Korean adults. Sci Rep. 2019;9(1):1-8. [DOI:10.1038/s41598-019-53277-0] [PMID] [PMCID]
2. Thonghong T, De Backer O, Søndergaard L. Comprehensive update on the new indications for transcatheter aortic valve replacement in the latest 2017 European guidelines for the management of valvular heart disease. Open Heart. 2018;5(1):e000753. [DOI:10.1136/openhrt-2017-000753] [PMID] [PMCID]
3. Birkmeyer NJ, Marrin CA, Morton JR, et al. Decreasing mortality for aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2000;70(2):432-7. [DOI:10.1016/S0003-4975(00)01456-9] [PMID]
4. Goldstone AB, Chiu P, Baiocchi M, et al. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. N Eng J Med. 2017;377(19):1847-57. [DOI:10.1056/NEJMoa1613792] [PMID] [PMCID]
5. Nowicki ER, Birkmeyer NJ, Weintraub RW, et al. Multivariable prediction of in-hospital mortality associated with aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2004;77(6):1966-77. [DOI:10.1016/j.athoracsur.2003.12.035] [PMID]
6. Hermiller JB, Yakubov SJ, Reardon MJ, et al. Predicting early and late mortality after transcatheter aortic valve replacement. J Am Coll Cardiol. 2016;68(4):343-52. [DOI:10.1016/j.jacc.2016.04.057] [PMID]
7. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Health J. 2019;6(2):94-8. [DOI:10.7861/futurehosp.6-2-94] [PMID] [PMCID]
8. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156-64. [DOI:10.1136/heartjnl-2017-311198] [PMID]
9. Arsang-Jang S, Kelishadi R, Motlagh ME, Heshmat R, Mansourian M. Temporal trend of non-invasive method capacity for early detection of metabolic syndrome in children and adolescents: A Bayesian multilevel analysis of pseudo-panel data. Ann Nutr Metab. 2019; 75(1):55-65. [DOI:10.1159/000500274] [PMID]
10. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1-28. [DOI:10.18637/jss.v080.i01]
11. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011; 12:2825-30.
12. Isaacs AJ, Shuhaiber J, Salemi A, Isom OW, Sedrakyan A. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J Torac Cardiovasc Surg. 2015; 149(5):1262-9, e3. [DOI:10.1016/j.jtcvs.2015.01.052] [PMID]
13. Astor BC, Kaczmarek RG, Hefflin B, Daley WR. Mortality after aortic valve replacement: results from a nationally representative database. Ann Thorac Surg. 2000; 70 (6):1939-45. [DOI:10.1016/S0003-4975(00)01670-2] [PMID]
14. Schapire RE. Explaining adaboost. Empirical inference: Springer; 2013. 37-52. [DOI:10.1007/978-3-642-41136-6_5]
15. Stenwig E, Salvi G, Rossi PS, Skjærvold NK. Comparative analysis of explainable machine learning prediction models for hospital mortality. BMC Med Res Methodol. 2022; 22(1):1-14. [DOI:10.1186/s12874-022-01540-w] [PMID] [PMCID]
16. Ayers B, Sandholm T, Gosev I, Prasad S, Kilic A. Using machine learning to improve survival prediction after heart transplantation. J Card Surg. 2021; 36(11):4113-20. [DOI:10.1111/jocs.15917] [PMID]
17. Lee HC, Yoon HK, Nam K. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018; 7(10):322. [DOI:10.3390/jcm7100322] [PMID] [PMCID]
18. Kilic A, Goyal A, Miller JK, et al. Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery. Ann Thorac Surg. 2020; 109(6):1811-9. [DOI:10.1016/j.athoracsur.2019.09.049] [PMID]
19. Hajianfar G, Shiri I, Maleki H, et al. Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg. 2019; 132: e140-e61. [DOI:10.1016/j.wneu.2019.08.232] [PMID]
20. Mansour NA, Saleh AI, Badawy M, Ali HA. Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. J Ambient Intell Humaniz Comput. 2021:1-33. [DOI:10.1007/s12652-020-02883-2] [PMID] [PMCID]
21. Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SA, Brandt J. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg. 2006; 132(1):12-9. [DOI:10.1016/j.jtcvs.2005.12.055] [PMID]
22. Zhong Z, Yuan X, Liu S, Yang Y, Liu F. Machine learning prediction models for prognosis of critically ill patients after open-heart surgery. Sci Rep. 2021; 11(1):1-10. [DOI:10.1038/s41598-021-83020-7] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb