1. Kim MS, Cho SJ, Park SJ, et al. Frequency and clinical associating factors of valvular heart disease in asymptomatic Korean adults. Sci Rep. 2019;9(1):1-8. [
DOI:10.1038/s41598-019-53277-0] [
PMID] [
PMCID]
2. Thonghong T, De Backer O, Søndergaard L. Comprehensive update on the new indications for transcatheter aortic valve replacement in the latest 2017 European guidelines for the management of valvular heart disease. Open Heart. 2018;5(1):e000753. [
DOI:10.1136/openhrt-2017-000753] [
PMID] [
PMCID]
3. Birkmeyer NJ, Marrin CA, Morton JR, et al. Decreasing mortality for aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2000;70(2):432-7. [
DOI:10.1016/S0003-4975(00)01456-9] [
PMID]
4. Goldstone AB, Chiu P, Baiocchi M, et al. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. N Eng J Med. 2017;377(19):1847-57. [
DOI:10.1056/NEJMoa1613792] [
PMID] [
PMCID]
5. Nowicki ER, Birkmeyer NJ, Weintraub RW, et al. Multivariable prediction of in-hospital mortality associated with aortic and mitral valve surgery in Northern New England. Ann Thorac Surg. 2004;77(6):1966-77. [
DOI:10.1016/j.athoracsur.2003.12.035] [
PMID]
6. Hermiller JB, Yakubov SJ, Reardon MJ, et al. Predicting early and late mortality after transcatheter aortic valve replacement. J Am Coll Cardiol. 2016;68(4):343-52. [
DOI:10.1016/j.jacc.2016.04.057] [
PMID]
7. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Health J. 2019;6(2):94-8. [
DOI:10.7861/futurehosp.6-2-94] [
PMID] [
PMCID]
8. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156-64. [
DOI:10.1136/heartjnl-2017-311198] [
PMID]
9. Arsang-Jang S, Kelishadi R, Motlagh ME, Heshmat R, Mansourian M. Temporal trend of non-invasive method capacity for early detection of metabolic syndrome in children and adolescents: A Bayesian multilevel analysis of pseudo-panel data. Ann Nutr Metab. 2019; 75(1):55-65. [
DOI:10.1159/000500274] [
PMID]
10. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1-28. [
DOI:10.18637/jss.v080.i01]
11. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011; 12:2825-30.
12. Isaacs AJ, Shuhaiber J, Salemi A, Isom OW, Sedrakyan A. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J Torac Cardiovasc Surg. 2015; 149(5):1262-9, e3. [
DOI:10.1016/j.jtcvs.2015.01.052] [
PMID]
13. Astor BC, Kaczmarek RG, Hefflin B, Daley WR. Mortality after aortic valve replacement: results from a nationally representative database. Ann Thorac Surg. 2000; 70 (6):1939-45. [
DOI:10.1016/S0003-4975(00)01670-2] [
PMID]
14. Schapire RE. Explaining adaboost. Empirical inference: Springer; 2013. 37-52. [
DOI:10.1007/978-3-642-41136-6_5]
15. Stenwig E, Salvi G, Rossi PS, Skjærvold NK. Comparative analysis of explainable machine learning prediction models for hospital mortality. BMC Med Res Methodol. 2022; 22(1):1-14. [
DOI:10.1186/s12874-022-01540-w] [
PMID] [
PMCID]
16. Ayers B, Sandholm T, Gosev I, Prasad S, Kilic A. Using machine learning to improve survival prediction after heart transplantation. J Card Surg. 2021; 36(11):4113-20. [
DOI:10.1111/jocs.15917] [
PMID]
17. Lee HC, Yoon HK, Nam K. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018; 7(10):322. [
DOI:10.3390/jcm7100322] [
PMID] [
PMCID]
18. Kilic A, Goyal A, Miller JK, et al. Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery. Ann Thorac Surg. 2020; 109(6):1811-9. [
DOI:10.1016/j.athoracsur.2019.09.049] [
PMID]
19. Hajianfar G, Shiri I, Maleki H, et al. Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg. 2019; 132: e140-e61. [
DOI:10.1016/j.wneu.2019.08.232] [
PMID]
20. Mansour NA, Saleh AI, Badawy M, Ali HA. Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. J Ambient Intell Humaniz Comput. 2021:1-33. [
DOI:10.1007/s12652-020-02883-2] [
PMID] [
PMCID]
21. Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SA, Brandt J. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg. 2006; 132(1):12-9. [
DOI:10.1016/j.jtcvs.2005.12.055] [
PMID]
22. Zhong Z, Yuan X, Liu S, Yang Y, Liu F. Machine learning prediction models for prognosis of critically ill patients after open-heart surgery. Sci Rep. 2021; 11(1):1-10. [
DOI:10.1038/s41598-021-83020-7] [
PMID] [
PMCID]