دوره 31، شماره 149 - ( 10-1402 )                   جلد 31 شماره 149 صفحات 524-514 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi A, Jalali Kondori B, Ghasemi M, Bahari Z. Potential Role of Oxidative Stress on the Pathophysiology of Neuropathic Pain in the Inflammatory Diseases. J Adv Med Biomed Res 2023; 31 (149) :514-524
URL: http://journal.zums.ac.ir/article-1-7097-fa.html
Potential Role of Oxidative Stress on the Pathophysiology of Neuropathic Pain in the Inflammatory Diseases. Journal of Advances in Medical and Biomedical Research. 1402; 31 (149) :514-524

URL: http://journal.zums.ac.ir/article-1-7097-fa.html


چکیده:   (1540 مشاهده)

Neuropathic pain (NP) is the outcome of lesion or disease of the nervous system, and it substantially influences the quality of life. Various inflammatory diseases such as rheumatoid arthritis (RA) and even cancer, may cause NP. Today, treatment of NP is the biggest pharmacological hurdles. Targeting inflammation is a broad task, since many mediators are involved in onset of particular disease. Among these many mediators, the reactive oxygen and nitrogen species generated by macrophages and neutrophils are of great interest because of their major contribution in development of inflammation and NP. This review will concentrate on the pathogenesis of inflammation based on involvement of reactive oxygen and nitrogen species and the activation of signalling cascades in response to oxidative stress. A systematic, and comprehensive search was conducted in the database. Based on the inclusion criteria, more than 300 peer-reviewed publications and 200 articles were chosen. In this review, data on oxidative stress and inflammation is compiled and discussed in the context of chronic neuropathic pain.It is suggested that oxidative stress can activate a variety of pro-inflammatory factors involved in chronic diseases. Animal and clinical evidence suggests that oxidative stress and inflammation linked to overproduction of ROS are highly likely to represent a critical factor for the development of NP in inflammatory diseases.

متن کامل [PDF 530 kb]   (363 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: Medical Biology
دریافت: 1402/4/26 | پذیرش: 1402/7/5 | انتشار: 1402/11/9

فهرست منابع
1. Bahari Z, Meftahi GH. Spinal α2 -adrenoceptors and neuropathic pain modulation; therapeutic target. Br J Pharmacol. 2019;176(14):2366-81. [DOI:10.1111/bph.14580] [PMID] [PMCID]
2. Haanpää ML, Gourlay GK, Kent JL, et al. Treatment considerations for patients with NP and other medical comorbidities. Mayo Clin Proceed. 2010:85(3 Suppl):S15-25 [DOI:10.4065/mcp.2009.0645] [PMID] [PMCID]
3. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of NP. PNAS. 2007;104(51):20151-8. [DOI:10.1073/pnas.0709250104] [PMID] [PMCID]
4. Mirasheh MH, Zohrehvand MR, Kazemi R, et al. The analgesic and anxiolytic activity of resveratrol mediated by different sub-types of α-adrenoceptors of anterior cingulate cortex following neuropathic pain in male rats. J Adv Med Biomed Res. 2020;28(129):183-90. [DOI:10.30699/jambs.28.129.183]
5. Zohrehvand MR, Kazemi R, Mirasheh MH, et al. Crocin suppressed cold allodynia and anxiety through α 2-adrenoceptors in the anterior cingulate cortex following chronic constriction injury of sciatic nerve in rats. J Pharm Res. 2020;24(6):833-41. [DOI:10.35333/JRP.2020.242]
6. Gibofsky A. Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: A Synopsis. AJMC. 2014;20(7):128-35.
7. Seegobin SD, Ma MH, Dahanayake C, et al. ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: secondary analysis of a randomized controlled trial. Arthrit Res Ther. 2014;16(1):1-12. [DOI:10.1186/ar4439] [PMID] [PMCID]
8. Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA. NP: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol. 2018;9:95. [DOI:10.3389/fphys.2018.00095] [PMID] [PMCID]
9. Filippin LI, Vercelino R, Marroni N, Xavier RM. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol. 2008;152(3):415-22. [DOI:10.1111/j.1365-2249.2008.03634.x] [PMID] [PMCID]
10. Stamp LK, Khalilova I, Tarr JM, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatol. 2012;51(10):1796-803. [DOI:10.1093/rheumatology/kes193] [PMID]
11. Vaya J. Exogenous markers for the characterization of human diseases associated with oxidative stress. Biochimie. 2013;95(3):578-84. [DOI:10.1016/j.biochi.2012.03.005] [PMID]
12. Roerig S, Wolf R, Grisham MB. Nitric oxide, chronic joint inflammation, and pain. Nitric Oxide. 2000:873-94. [DOI:10.1016/B978-012370420-7/50054-X]
13. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323-54. [DOI:10.1146/annurev.pharmtox.010909.105600] [PMID]
14. Barañano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. A mammalian iron ATPase induced by iron. J Biol Chem. 2000;275(20):15166-73. [DOI:10.1074/jbc.275.20.15166] [PMID]
15. Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med. 2020;157:83-93. [DOI:10.1016/j.freeradbiomed.2019.12.007] [PMID]
16. Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MS, et al. Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Front Pharmacol. 2019:1536. [DOI:10.3389/fphar.2018.01536] [PMID] [PMCID]
17. Kapetanaki SM, Burton MJ, Basran J, et al. A mechanism for CO regulation of ion channels. Nat Commun. 2018;9(1):1-10. [DOI:10.1038/s41467-018-03291-z] [PMID] [PMCID]
18. Abreu TM, Ribeiro NA, Chaves HV, et al. Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 2016;82(07):596-605. [DOI:10.1055/s-0042-101762] [PMID]
19. Said G. Infectious neuropathies. Neurol Clin. 2007;25(1):115-37. [DOI:10.1016/j.ncl.2006.11.004] [PMID]
20. de Freitas MR, Said G. Leprous neuropathy. Handbook of clinical neurology. 2013;115:499-514. [DOI:10.1016/B978-0-444-52902-2.00028-X] [PMID]
21. Saunderson P, Bizuneh E, Leekassa R. NP in people treated for multibacillary leprosy more than ten years previously. Lepr Rev. 2008;79(3):270-6. [DOI:10.47276/lr.79.3.270] [PMID]
22. Vijayaraghavan R, Suribabu C, Oommen P, Panneerselvam C. Vitamin E reduces reactive oxygen species mediated damage to bio-molecules in leprosy during multi-drug therapy. Curr Trends Biotechnol Pharm. 2009;3(4):428-39.
23. Borah K, Girardi KdCdV, Mendum TA, et al. Intracellular mycobacterium leprae utilizes host glucose as a carbon source in Schwann cells. MBio. 2019;10(6):02351-19. [DOI:10.1128/mBio.02351-19] [PMID] [PMCID]
24. Medeiros RCA, de Vasconcelos Girardi KdC, Cardoso FKL, et al. Subversion of schwann cell glucose metabolism by mycobacterium leprae. J Biol Chem. 2016;291(41):21375-87. [DOI:10.1074/jbc.M116.725283] [PMID] [PMCID]
25. Batista-Silva R, Sola-Penna M, de Oliveira MF, et al. Subversion of schwann cell glucose metabolism by. JBC. 2016;291(47):24803. [DOI:10.1074/jbc.A116.725283] [PMID] [PMCID]
26. Pooya S, Liu X, Kumar V, et al. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun. 2014;5(1):1-16. [DOI:10.1038/ncomms5993] [PMID] [PMCID]
27. Scollard DM, Truman RW, Ebenezer GJ. Mechanisms of nerve injury in leprosy. Clin Dermatol. 2015;33(1):46-54. [DOI:10.1016/j.clindermatol.2014.07.008] [PMID]
28. Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443-8. [DOI:10.1038/nature11314] [PMID] [PMCID]
29. Tang F, Lane S, Korsak A, et al. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun. 2014;5(1):1-14. [DOI:10.1038/ncomms4993] [PMID] [PMCID]
30. Domenech-Estévez E, Baloui H, Repond C, et al. Distribution of monocarboxylate transporters in the peripheral nervous system suggests putative roles in lactate shuttling and myelination. J Neuroscience. 2015;35(10):4151-6. [DOI:10.1523/JNEUROSCI.3534-14.2015] [PMID] [PMCID]
31. Save MP, Shetty VP, Shetty KT. Hypophosphorylation of NF-H and NF-M subunits of neurofilaments and the associated decrease in KSPXK kinase activity in the sciatic nerves of Swiss white mice inoculated in the foot pad with Mycobacterium leprae. Lep Rev. 2009;80(4):388-401. [DOI:10.47276/lr.80.4.388]
32. Chiu SY. Matching mitochondria to metabolic needs at nodes of Ranvier. Neurosci. 2011;17(4):343-50. [DOI:10.1177/1073858410393740] [PMID]
33. Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya J-M, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol. 2016;12(11):1175-89. [DOI:10.1080/1744666X.2016.1193006] [PMID]
34. Ghabaee M, Jabedari B, Al-E-Eshagh N, Ghaffarpour M, Asadi F. Serum and cerebrospinal fluid antioxidant activity and lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int J Neurosci. 2010;120(4):301-4. [DOI:10.3109/00207451003695690] [PMID]
35. Yuki N, Hartung H-P. Guillain-barré syndrome. N Engl J Med. 2012;366(24):2294-304. [DOI:10.1056/NEJMra1114525] [PMID]
36. Van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol. 2008;7(10):939-50. [DOI:10.1016/S1474-4422(08)70215-1] [PMID]
37. Walling A, Dickson G. Guillain-Barré syndrome. AFP. 2013;87(3):191-7.
38. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598-625. [DOI:10.1189/jlb.1204697] [PMID]
39. Amorini AM, Petzold A, Tavazzi B, et al. Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem. 2009;42(10-11):1001-6. [DOI:10.1016/j.clinbiochem.2009.03.020] [PMID]
40. Cutler RG, Camandola S, Feldman NH, et al. Uric acid enhances longevity and endurance and protects the brain against ischemia. Neurobiol Aging. 2019;75:159-68. [DOI:10.1016/j.neurobiolaging.2018.10.031] [PMID] [PMCID]
41. Min JH, Waters P, Vincent A, et al. Reduced serum uric acid levels in neuromyelitis optica: serum uric acid levels are reduced during relapses in NMO. Acta Neurol Scand. 2012;126(4):287-91. [DOI:10.1111/j.1600-0404.2012.01643.x] [PMID]
42. Chang SH, Tian XB, Wang J, et al. Increased cerebrospinal fluid uric acid levels in Guillain-Barré syndrome. Front Neurol. 2020:1501. [DOI:10.3389/fneur.2020.589928] [PMID] [PMCID]
43. Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta Mol Basis Dis. 2016;1862(3):506-10. [DOI:10.1016/j.bbadis.2015.09.018] [PMID]
44. Moalem-Taylor G, Allbutt HN, Iordanova MD, Tracey DJ. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain Behav Immun. 2007;21(5):699-710 [DOI:10.1016/j.bbi.2006.07.007] [PMID]
45. McMahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol. 2005;192(2):444-62. [DOI:10.1016/j.expneurol.2004.11.001] [PMID]
46. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013-67. [DOI:10.1152/physrev.00015.2002] [PMID]
47. Zhang Z, Zhang Z-Y, Fauser U, Schluesener H. Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats. Neurosci. 2008;152(2):495-501. [DOI:10.1016/j.neuroscience.2007.12.042] [PMID]
48. Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185-9. [DOI:10.1016/j.jneuroim.2010.07.013] [PMID]
49. Wang S, Cen X, Liang X, Tang Y. Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget. 2017;8(6):10650. [DOI:10.18632/oncotarget.12890] [PMID] [PMCID]
50. Jung H, Seong HA, Ha H. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. JBC. 2008;283(29):20383-96. [DOI:10.1074/jbc.M800050200] [PMID]
51. Falvey JD, Bentley RW, Merriman TR, et al. Macrophage migration inhibitory factor gene polymorphisms in inflammatory bowel disease: an association study in New Zealand Caucasians and meta-analysis. WJG. 2013;19(39):6656. [DOI:10.3748/wjg.v19.i39.6656] [PMID] [PMCID]
52. Sainaghi PP, Collimedaglia L, Alciato F, et al. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barré syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine. 2010;51(2):138-43. [DOI:10.1016/j.cyto.2010.05.005] [PMID]
53. Healy ZR, Liu H, Holtzclaw WD, Talalay P. Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1516-23. [DOI:10.1158/1055-9965.EPI-11-0279] [PMID] [PMCID]
54. Wang YZ, Tian FF, Liu H, et al. Macrophage migration inhibitory factor is necessary for the Lipo-oligosaccharide-induced response by modulation of Toll-like receptor 4 in monocytes from GBS patients. J Neuroimmunol. 2013;257(1-2):67-75. [DOI:10.1016/j.jneuroim.2013.01.006] [PMID]
55. Bye CR, Thompson LH, Parish CL. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp Neurol. 2012;236(1):58-68. [DOI:10.1016/j.expneurol.2012.04.002] [PMID]
56. Shen D, Lang Y, Chu F, et al. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets. 2018;22(7):567-77. [DOI:10.1080/14728222.2018.1484109] [PMID]
57. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582(13):1783-7. [DOI:10.1016/j.febslet.2008.04.057] [PMID]
58. Su Z, Chen Z, Xiang Y, et al. Low serum levels of uric acid and albumin in patients with Guillain-Barre syndrome. Medicine. 2017;96(15). [DOI:10.1097/MD.0000000000006618] [PMID] [PMCID]
59. McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Rad Biol Med. 2018;125:15-24. [DOI:10.1016/j.freeradbiomed.2018.03.042] [PMID]
60. Fais A, Cacace E, Atzori L, Era B, Ruggiero V. Plasma phospholipase, γ‐CEHC and antioxidant capacity in fibromyalgia. Int J Rheum Dis. 2017;20(5):550-4. [DOI:10.1111/1756-185X.12787] [PMID]
61. Alcocer-Gómez E, Garrido-Maraver J, Bullón P, et al. Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients. Biochim Biophys Acta. 2015;1852(7):1257-67. [DOI:10.1016/j.bbadis.2015.03.005] [PMID]
62. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. ARS. 2011;14(7):1275-88. [DOI:10.1089/ars.2010.3359] [PMID] [PMCID]
63. Cordero MD, De Miguel M, Moreno Fernández AM, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010;12(1):1-11. [DOI:10.1186/ar2918] [PMID] [PMCID]
64. Sánchez-Domínguez B, Bullón P, Román-Malo L, et al. Oxidative stress, mitochondrial dysfunction and, inflammation common events in skin of patients with Fibromyalgia. Mitochondrion. 2015;21:69-75. [DOI:10.1016/j.mito.2015.01.010] [PMID]
65. Lucas H, Brauch C, Settas L, Theoharides T. Fibromyalgia-new concepts of pathogenesis and treatment. Int J Immunopathol Pharmacol. 2006;19(1):5-10. [DOI:10.1177/205873920601900102] [PMID]
66. Kim S-H, Kim DH, Oh D-H, Clauw DJ. Characteristic electron microscopic findings in the skin of patients with fibromyalgia-preliminary study. Clin Rheumatol. 2008;27(3):407-11. [DOI:10.1007/s10067-007-0807-7] [PMID]
67. Cordero MD, Cano-García FJ, Alcocer-Gómez E, De Miguel M, Sánchez-Alcázar JA. Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q10 effect on clinical improvement. PloS One. 2012;7(4):35677. [DOI:10.1371/journal.pone.0035677] [PMID] [PMCID]
68. Chung CP, Titova D, Oeser A, et al. Oxidative stress in fibromyalgia and its relationship to symptoms. Clin Rheumatol. 2009;28(4):435-8. [DOI:10.1007/s10067-008-1072-0] [PMID] [PMCID]
69. Miranda-Díaz AG, Rodríguez-Lara SQ. The role of oxidants/antioxidants, mitochondrial dysfunction, and autophagy in fibromyalgia. InTech; 2018. Available from: [DOI:10.5772/intechopen.70695]
70. La Rubia M, Rus A, Molina F, Del Moral ML. Is fibromyalgia-related oxidative stress implicated in the decline of physical and mental health status. Clin Exp Rheumatol. 2013;31(6 Suppl 79):121-7.
71. Al-Gebori AM, Tarik M, Rajab A, Al-Osami MH, Turki KM. Levels of magnesium, zinc, calcium and copper in serum of patients with fibromyalgia syndrome. Iraq Post Med J. 2011;10(2).
72. Sendur OF, Tastaban E, Turan Y, Ulman C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol Int. 2008;28(11):1117-21. [DOI:10.1007/s00296-008-0593-9] [PMID]
73. Altindag O, Celik H. Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Red Report. 2006;11(3):131-5. [DOI:10.1179/135100006X116628] [PMID]
74. Wang H, Moser M, Schiltenwolf M, Buchner M. Circulating cytokine levels compared to pain in patients with fibromyalgia-a prospective longitudinal study over 6 months. J Rheumatol. 2008;35(7):1366-70.
75. Fusco R, Siracusa R, D'Amico R, et al. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: An evaluation of pain, oxidative stress, and inflammation. Antioxidants. 2019;8(12):628. [DOI:10.3390/antiox8120628] [PMID] [PMCID]
76. Aich A, Afrin LB, Gupta K. Mast cell-mediated mechanisms of nociception. Int J Mol Sci. 2015;16(12):29069-92. [DOI:10.3390/ijms161226151] [PMID] [PMCID]
77. Theoharides TC, Tsilioni I, Bawazeer M. Mast cells, neuroinflammation and pain in fibromyalgia syndrome. Front Cell Neurosci. 2019:353. [DOI:10.3389/fncel.2019.00353] [PMID] [PMCID]
78. D Skaper S, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets. 2014;13(10):1654-66. [DOI:10.2174/1871527313666141130224206] [PMID]
79. Hansson E. Long-term pain, neuroinflammation and glial activation. Scandin J Pain. 2010;1(2):67-72. [DOI:10.1016/j.sjpain.2010.01.002] [PMID]
80. Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain-interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis. J Neuroimmunol. 2015;280:49-55. [DOI:10.1016/j.jneuroim.2015.02.002] [PMID] [PMCID]
81. Vincent L, Vang D, Nguyen J, et al. Mast cell activation contributes to sickle cell pathobiology and pain in mice. Am J Hematol. 2013;122(11):1853-62. [DOI:10.1182/blood-2013-04-498105] [PMID] [PMCID]
82. Bhattacharyya S, Saha J. Tumour, oxidative stress and host T cell response: cementing the dominance. Scand J Immunol. 2015;82(6):477-88. [DOI:10.1111/sji.12350] [PMID]
83. Zhu YF, Linher-Melville K, Wu J, et al. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain. 2020;16:1744806920911536. [DOI:10.1177/1744806920911536] [PMID] [PMCID]
84. Yi H, Talmon G, Wang J. Glutamate in cancers: From metabolism to signaling. Biomed Res J. 2020;34(4):260. [DOI:10.7555/JBR.34.20190037] [PMID] [PMCID]
85. Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28-36. [DOI:10.1016/j.pain.2013.08.030] [PMID]
86. Dai WL, Yan B, Jiang N, et al. Simultaneous inhibition of NMDA and mGlu1/5 receptors by levo‐corydalmine in rat spinal cord attenuates bone cancer pain. IJC. 2017;141(4):805-15. [DOI:10.1002/ijc.30780] [PMID]
87. Bridges RJ, Natale NR, Patel SA. System xc‐cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165(1):20-34. [DOI:10.1111/j.1476-5381.2011.01480.x] [PMID] [PMCID]
88. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83. [DOI:10.2147/HP.S93413] [PMID] [PMCID]
89. Ganapathy-Kanniappan S, Geschwind J-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12(1):1-11. [DOI:10.1186/1476-4598-12-152] [PMID] [PMCID]
90. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. JCB. 2018;217(7):2291-8. [DOI:10.1083/jcb.201804161] [PMID] [PMCID]
91. Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013;2013. [DOI:10.1155/2013/972913] [PMID] [PMCID]
92. Dutta S, Ray S, Nagarajan K. Glutamic acid as anticancer agent: An overview. SPJ. 2013;21(4):337-43. [DOI:10.1016/j.jsps.2012.12.007] [PMID] [PMCID]
93. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-43. [DOI:10.1016/j.redox.2015.08.009] [PMID] [PMCID]
94. Csekő K, Beckers B, Keszthelyi D, Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? Pharmaceuticals. 2019;12(2):48. [DOI:10.3390/ph12020048] [PMID] [PMCID]
95. Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone pain in cancer patients: mechanisms and current treatment. Int J Mol Sci. 2019;20(23):6047. [DOI:10.3390/ijms20236047] [PMID] [PMCID]
96. Lozano-Ondoua A, Symons-Liguori A, Vanderah TW. Cancer-induced bone pain: mechanisms and models. Neuroscience Lett. 2013;557:52-9. [DOI:10.1016/j.neulet.2013.08.003] [PMID] [PMCID]
97. Ni H, Xu LS, Wang Y, et al. Astrocyte activation in the periaqueductal gray promotes descending facilitation to cancer-induced bone pain through the JNK MAPK signaling pathway. Mol Pain. 2019;15:1744806919831909. [DOI:10.1177/1744806919831909] [PMID] [PMCID]
98. Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene related peptide: A promising bridge between cancer development and cancer associated pain in oral squamous cell carcinoma. Oncology Lett. 2020;20(5):253. [DOI:10.3892/ol.2020.12116] [PMID] [PMCID]
99. Falk S, Bannister K, Dickenson AH. Cancer pain physiology. Br J Pain. 2014;8(4):154-62. [DOI:10.1177/2049463714545136] [PMID] [PMCID]
100. Zhou YQ, Liu DQ, Chen SP, et al. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol. 2018;14:391-7. [DOI:10.1016/j.redox.2017.10.011] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb