1. Bahari Z, Meftahi GH. Spinal α2 -adrenoceptors and neuropathic pain modulation; therapeutic target. Br J Pharmacol. 2019;176(14):2366-81. [
DOI:10.1111/bph.14580] [
PMID] [
PMCID]
2. Haanpää ML, Gourlay GK, Kent JL, et al. Treatment considerations for patients with NP and other medical comorbidities. Mayo Clin Proceed. 2010:85(3 Suppl):S15-25 [
DOI:10.4065/mcp.2009.0645] [
PMID] [
PMCID]
3. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of NP. PNAS. 2007;104(51):20151-8. [
DOI:10.1073/pnas.0709250104] [
PMID] [
PMCID]
4. Mirasheh MH, Zohrehvand MR, Kazemi R, et al. The analgesic and anxiolytic activity of resveratrol mediated by different sub-types of α-adrenoceptors of anterior cingulate cortex following neuropathic pain in male rats. J Adv Med Biomed Res. 2020;28(129):183-90. [
DOI:10.30699/jambs.28.129.183]
5. Zohrehvand MR, Kazemi R, Mirasheh MH, et al. Crocin suppressed cold allodynia and anxiety through α 2-adrenoceptors in the anterior cingulate cortex following chronic constriction injury of sciatic nerve in rats. J Pharm Res. 2020;24(6):833-41. [
DOI:10.35333/JRP.2020.242]
6. Gibofsky A. Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: A Synopsis. AJMC. 2014;20(7):128-35.
7. Seegobin SD, Ma MH, Dahanayake C, et al. ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: secondary analysis of a randomized controlled trial. Arthrit Res Ther. 2014;16(1):1-12. [
DOI:10.1186/ar4439] [
PMID] [
PMCID]
8. Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA. NP: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol. 2018;9:95. [
DOI:10.3389/fphys.2018.00095] [
PMID] [
PMCID]
9. Filippin LI, Vercelino R, Marroni N, Xavier RM. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol. 2008;152(3):415-22. [
DOI:10.1111/j.1365-2249.2008.03634.x] [
PMID] [
PMCID]
10. Stamp LK, Khalilova I, Tarr JM, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatol. 2012;51(10):1796-803. [
DOI:10.1093/rheumatology/kes193] [
PMID]
11. Vaya J. Exogenous markers for the characterization of human diseases associated with oxidative stress. Biochimie. 2013;95(3):578-84. [
DOI:10.1016/j.biochi.2012.03.005] [
PMID]
12. Roerig S, Wolf R, Grisham MB. Nitric oxide, chronic joint inflammation, and pain. Nitric Oxide. 2000:873-94. [
DOI:10.1016/B978-012370420-7/50054-X]
13. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323-54. [
DOI:10.1146/annurev.pharmtox.010909.105600] [
PMID]
14. Barañano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. A mammalian iron ATPase induced by iron. J Biol Chem. 2000;275(20):15166-73. [
DOI:10.1074/jbc.275.20.15166] [
PMID]
15. Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med. 2020;157:83-93. [
DOI:10.1016/j.freeradbiomed.2019.12.007] [
PMID]
16. Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MS, et al. Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Front Pharmacol. 2019:1536. [
DOI:10.3389/fphar.2018.01536] [
PMID] [
PMCID]
17. Kapetanaki SM, Burton MJ, Basran J, et al. A mechanism for CO regulation of ion channels. Nat Commun. 2018;9(1):1-10. [
DOI:10.1038/s41467-018-03291-z] [
PMID] [
PMCID]
18. Abreu TM, Ribeiro NA, Chaves HV, et al. Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 2016;82(07):596-605. [
DOI:10.1055/s-0042-101762] [
PMID]
19. Said G. Infectious neuropathies. Neurol Clin. 2007;25(1):115-37. [
DOI:10.1016/j.ncl.2006.11.004] [
PMID]
20. de Freitas MR, Said G. Leprous neuropathy. Handbook of clinical neurology. 2013;115:499-514. [
DOI:10.1016/B978-0-444-52902-2.00028-X] [
PMID]
21. Saunderson P, Bizuneh E, Leekassa R. NP in people treated for multibacillary leprosy more than ten years previously. Lepr Rev. 2008;79(3):270-6. [
DOI:10.47276/lr.79.3.270] [
PMID]
22. Vijayaraghavan R, Suribabu C, Oommen P, Panneerselvam C. Vitamin E reduces reactive oxygen species mediated damage to bio-molecules in leprosy during multi-drug therapy. Curr Trends Biotechnol Pharm. 2009;3(4):428-39.
23. Borah K, Girardi KdCdV, Mendum TA, et al. Intracellular mycobacterium leprae utilizes host glucose as a carbon source in Schwann cells. MBio. 2019;10(6):02351-19. [
DOI:10.1128/mBio.02351-19] [
PMID] [
PMCID]
24. Medeiros RCA, de Vasconcelos Girardi KdC, Cardoso FKL, et al. Subversion of schwann cell glucose metabolism by mycobacterium leprae. J Biol Chem. 2016;291(41):21375-87. [
DOI:10.1074/jbc.M116.725283] [
PMID] [
PMCID]
25. Batista-Silva R, Sola-Penna M, de Oliveira MF, et al. Subversion of schwann cell glucose metabolism by. JBC. 2016;291(47):24803. [
DOI:10.1074/jbc.A116.725283] [
PMID] [
PMCID]
26. Pooya S, Liu X, Kumar V, et al. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun. 2014;5(1):1-16. [
DOI:10.1038/ncomms5993] [
PMID] [
PMCID]
27. Scollard DM, Truman RW, Ebenezer GJ. Mechanisms of nerve injury in leprosy. Clin Dermatol. 2015;33(1):46-54. [
DOI:10.1016/j.clindermatol.2014.07.008] [
PMID]
28. Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443-8. [
DOI:10.1038/nature11314] [
PMID] [
PMCID]
29. Tang F, Lane S, Korsak A, et al. Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun. 2014;5(1):1-14. [
DOI:10.1038/ncomms4993] [
PMID] [
PMCID]
30. Domenech-Estévez E, Baloui H, Repond C, et al. Distribution of monocarboxylate transporters in the peripheral nervous system suggests putative roles in lactate shuttling and myelination. J Neuroscience. 2015;35(10):4151-6. [
DOI:10.1523/JNEUROSCI.3534-14.2015] [
PMID] [
PMCID]
31. Save MP, Shetty VP, Shetty KT. Hypophosphorylation of NF-H and NF-M subunits of neurofilaments and the associated decrease in KSPXK kinase activity in the sciatic nerves of Swiss white mice inoculated in the foot pad with Mycobacterium leprae. Lep Rev. 2009;80(4):388-401. [
DOI:10.47276/lr.80.4.388]
32. Chiu SY. Matching mitochondria to metabolic needs at nodes of Ranvier. Neurosci. 2011;17(4):343-50. [
DOI:10.1177/1073858410393740] [
PMID]
33. Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya J-M, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol. 2016;12(11):1175-89. [
DOI:10.1080/1744666X.2016.1193006] [
PMID]
34. Ghabaee M, Jabedari B, Al-E-Eshagh N, Ghaffarpour M, Asadi F. Serum and cerebrospinal fluid antioxidant activity and lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int J Neurosci. 2010;120(4):301-4. [
DOI:10.3109/00207451003695690] [
PMID]
35. Yuki N, Hartung H-P. Guillain-barré syndrome. N Engl J Med. 2012;366(24):2294-304. [
DOI:10.1056/NEJMra1114525] [
PMID]
36. Van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol. 2008;7(10):939-50. [
DOI:10.1016/S1474-4422(08)70215-1] [
PMID]
37. Walling A, Dickson G. Guillain-Barré syndrome. AFP. 2013;87(3):191-7.
38. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598-625. [
DOI:10.1189/jlb.1204697] [
PMID]
39. Amorini AM, Petzold A, Tavazzi B, et al. Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem. 2009;42(10-11):1001-6. [
DOI:10.1016/j.clinbiochem.2009.03.020] [
PMID]
40. Cutler RG, Camandola S, Feldman NH, et al. Uric acid enhances longevity and endurance and protects the brain against ischemia. Neurobiol Aging. 2019;75:159-68. [
DOI:10.1016/j.neurobiolaging.2018.10.031] [
PMID] [
PMCID]
41. Min JH, Waters P, Vincent A, et al. Reduced serum uric acid levels in neuromyelitis optica: serum uric acid levels are reduced during relapses in NMO. Acta Neurol Scand. 2012;126(4):287-91. [
DOI:10.1111/j.1600-0404.2012.01643.x] [
PMID]
42. Chang SH, Tian XB, Wang J, et al. Increased cerebrospinal fluid uric acid levels in Guillain-Barré syndrome. Front Neurol. 2020:1501. [
DOI:10.3389/fneur.2020.589928] [
PMID] [
PMCID]
43. Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta Mol Basis Dis. 2016;1862(3):506-10. [
DOI:10.1016/j.bbadis.2015.09.018] [
PMID]
44. Moalem-Taylor G, Allbutt HN, Iordanova MD, Tracey DJ. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain Behav Immun. 2007;21(5):699-710 [
DOI:10.1016/j.bbi.2006.07.007] [
PMID]
45. McMahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol. 2005;192(2):444-62. [
DOI:10.1016/j.expneurol.2004.11.001] [
PMID]
46. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013-67. [
DOI:10.1152/physrev.00015.2002] [
PMID]
47. Zhang Z, Zhang Z-Y, Fauser U, Schluesener H. Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats. Neurosci. 2008;152(2):495-501. [
DOI:10.1016/j.neuroscience.2007.12.042] [
PMID]
48. Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185-9. [
DOI:10.1016/j.jneuroim.2010.07.013] [
PMID]
49. Wang S, Cen X, Liang X, Tang Y. Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget. 2017;8(6):10650. [
DOI:10.18632/oncotarget.12890] [
PMID] [
PMCID]
50. Jung H, Seong HA, Ha H. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. JBC. 2008;283(29):20383-96. [
DOI:10.1074/jbc.M800050200] [
PMID]
51. Falvey JD, Bentley RW, Merriman TR, et al. Macrophage migration inhibitory factor gene polymorphisms in inflammatory bowel disease: an association study in New Zealand Caucasians and meta-analysis. WJG. 2013;19(39):6656. [
DOI:10.3748/wjg.v19.i39.6656] [
PMID] [
PMCID]
52. Sainaghi PP, Collimedaglia L, Alciato F, et al. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barré syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine. 2010;51(2):138-43. [
DOI:10.1016/j.cyto.2010.05.005] [
PMID]
53. Healy ZR, Liu H, Holtzclaw WD, Talalay P. Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1516-23. [
DOI:10.1158/1055-9965.EPI-11-0279] [
PMID] [
PMCID]
54. Wang YZ, Tian FF, Liu H, et al. Macrophage migration inhibitory factor is necessary for the Lipo-oligosaccharide-induced response by modulation of Toll-like receptor 4 in monocytes from GBS patients. J Neuroimmunol. 2013;257(1-2):67-75. [
DOI:10.1016/j.jneuroim.2013.01.006] [
PMID]
55. Bye CR, Thompson LH, Parish CL. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp Neurol. 2012;236(1):58-68. [
DOI:10.1016/j.expneurol.2012.04.002] [
PMID]
56. Shen D, Lang Y, Chu F, et al. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets. 2018;22(7):567-77. [
DOI:10.1080/14728222.2018.1484109] [
PMID]
57. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582(13):1783-7. [
DOI:10.1016/j.febslet.2008.04.057] [
PMID]
58. Su Z, Chen Z, Xiang Y, et al. Low serum levels of uric acid and albumin in patients with Guillain-Barre syndrome. Medicine. 2017;96(15). [
DOI:10.1097/MD.0000000000006618] [
PMID] [
PMCID]
59. McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Rad Biol Med. 2018;125:15-24. [
DOI:10.1016/j.freeradbiomed.2018.03.042] [
PMID]
60. Fais A, Cacace E, Atzori L, Era B, Ruggiero V. Plasma phospholipase, γ‐CEHC and antioxidant capacity in fibromyalgia. Int J Rheum Dis. 2017;20(5):550-4. [
DOI:10.1111/1756-185X.12787] [
PMID]
61. Alcocer-Gómez E, Garrido-Maraver J, Bullón P, et al. Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients. Biochim Biophys Acta. 2015;1852(7):1257-67. [
DOI:10.1016/j.bbadis.2015.03.005] [
PMID]
62. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. ARS. 2011;14(7):1275-88. [
DOI:10.1089/ars.2010.3359] [
PMID] [
PMCID]
63. Cordero MD, De Miguel M, Moreno Fernández AM, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010;12(1):1-11. [
DOI:10.1186/ar2918] [
PMID] [
PMCID]
64. Sánchez-Domínguez B, Bullón P, Román-Malo L, et al. Oxidative stress, mitochondrial dysfunction and, inflammation common events in skin of patients with Fibromyalgia. Mitochondrion. 2015;21:69-75. [
DOI:10.1016/j.mito.2015.01.010] [
PMID]
65. Lucas H, Brauch C, Settas L, Theoharides T. Fibromyalgia-new concepts of pathogenesis and treatment. Int J Immunopathol Pharmacol. 2006;19(1):5-10. [
DOI:10.1177/205873920601900102] [
PMID]
66. Kim S-H, Kim DH, Oh D-H, Clauw DJ. Characteristic electron microscopic findings in the skin of patients with fibromyalgia-preliminary study. Clin Rheumatol. 2008;27(3):407-11. [
DOI:10.1007/s10067-007-0807-7] [
PMID]
67. Cordero MD, Cano-García FJ, Alcocer-Gómez E, De Miguel M, Sánchez-Alcázar JA. Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q10 effect on clinical improvement. PloS One. 2012;7(4):35677. [
DOI:10.1371/journal.pone.0035677] [
PMID] [
PMCID]
68. Chung CP, Titova D, Oeser A, et al. Oxidative stress in fibromyalgia and its relationship to symptoms. Clin Rheumatol. 2009;28(4):435-8. [
DOI:10.1007/s10067-008-1072-0] [
PMID] [
PMCID]
69. Miranda-Díaz AG, Rodríguez-Lara SQ. The role of oxidants/antioxidants, mitochondrial dysfunction, and autophagy in fibromyalgia. InTech; 2018. Available from: [
DOI:10.5772/intechopen.70695]
70. La Rubia M, Rus A, Molina F, Del Moral ML. Is fibromyalgia-related oxidative stress implicated in the decline of physical and mental health status. Clin Exp Rheumatol. 2013;31(6 Suppl 79):121-7.
71. Al-Gebori AM, Tarik M, Rajab A, Al-Osami MH, Turki KM. Levels of magnesium, zinc, calcium and copper in serum of patients with fibromyalgia syndrome. Iraq Post Med J. 2011;10(2).
72. Sendur OF, Tastaban E, Turan Y, Ulman C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol Int. 2008;28(11):1117-21. [
DOI:10.1007/s00296-008-0593-9] [
PMID]
73. Altindag O, Celik H. Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Red Report. 2006;11(3):131-5. [
DOI:10.1179/135100006X116628] [
PMID]
74. Wang H, Moser M, Schiltenwolf M, Buchner M. Circulating cytokine levels compared to pain in patients with fibromyalgia-a prospective longitudinal study over 6 months. J Rheumatol. 2008;35(7):1366-70.
75. Fusco R, Siracusa R, D'Amico R, et al. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: An evaluation of pain, oxidative stress, and inflammation. Antioxidants. 2019;8(12):628. [
DOI:10.3390/antiox8120628] [
PMID] [
PMCID]
76. Aich A, Afrin LB, Gupta K. Mast cell-mediated mechanisms of nociception. Int J Mol Sci. 2015;16(12):29069-92. [
DOI:10.3390/ijms161226151] [
PMID] [
PMCID]
77. Theoharides TC, Tsilioni I, Bawazeer M. Mast cells, neuroinflammation and pain in fibromyalgia syndrome. Front Cell Neurosci. 2019:353. [
DOI:10.3389/fncel.2019.00353] [
PMID] [
PMCID]
78. D Skaper S, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets. 2014;13(10):1654-66. [
DOI:10.2174/1871527313666141130224206] [
PMID]
79. Hansson E. Long-term pain, neuroinflammation and glial activation. Scandin J Pain. 2010;1(2):67-72. [
DOI:10.1016/j.sjpain.2010.01.002] [
PMID]
80. Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain-interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis. J Neuroimmunol. 2015;280:49-55. [
DOI:10.1016/j.jneuroim.2015.02.002] [
PMID] [
PMCID]
81. Vincent L, Vang D, Nguyen J, et al. Mast cell activation contributes to sickle cell pathobiology and pain in mice. Am J Hematol. 2013;122(11):1853-62. [
DOI:10.1182/blood-2013-04-498105] [
PMID] [
PMCID]
82. Bhattacharyya S, Saha J. Tumour, oxidative stress and host T cell response: cementing the dominance. Scand J Immunol. 2015;82(6):477-88. [
DOI:10.1111/sji.12350] [
PMID]
83. Zhu YF, Linher-Melville K, Wu J, et al. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain. 2020;16:1744806920911536. [
DOI:10.1177/1744806920911536] [
PMID] [
PMCID]
84. Yi H, Talmon G, Wang J. Glutamate in cancers: From metabolism to signaling. Biomed Res J. 2020;34(4):260. [
DOI:10.7555/JBR.34.20190037] [
PMID] [
PMCID]
85. Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28-36. [
DOI:10.1016/j.pain.2013.08.030] [
PMID]
86. Dai WL, Yan B, Jiang N, et al. Simultaneous inhibition of NMDA and mGlu1/5 receptors by levo‐corydalmine in rat spinal cord attenuates bone cancer pain. IJC. 2017;141(4):805-15. [
DOI:10.1002/ijc.30780] [
PMID]
87. Bridges RJ, Natale NR, Patel SA. System xc‐cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165(1):20-34. [
DOI:10.1111/j.1476-5381.2011.01480.x] [
PMID] [
PMCID]
88. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83. [
DOI:10.2147/HP.S93413] [
PMID] [
PMCID]
89. Ganapathy-Kanniappan S, Geschwind J-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12(1):1-11. [
DOI:10.1186/1476-4598-12-152] [
PMID] [
PMCID]
90. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. JCB. 2018;217(7):2291-8. [
DOI:10.1083/jcb.201804161] [
PMID] [
PMCID]
91. Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013;2013. [
DOI:10.1155/2013/972913] [
PMID] [
PMCID]
92. Dutta S, Ray S, Nagarajan K. Glutamic acid as anticancer agent: An overview. SPJ. 2013;21(4):337-43. [
DOI:10.1016/j.jsps.2012.12.007] [
PMID] [
PMCID]
93. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-43. [
DOI:10.1016/j.redox.2015.08.009] [
PMID] [
PMCID]
94. Csekő K, Beckers B, Keszthelyi D, Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? Pharmaceuticals. 2019;12(2):48. [
DOI:10.3390/ph12020048] [
PMID] [
PMCID]
95. Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone pain in cancer patients: mechanisms and current treatment. Int J Mol Sci. 2019;20(23):6047. [
DOI:10.3390/ijms20236047] [
PMID] [
PMCID]
96. Lozano-Ondoua A, Symons-Liguori A, Vanderah TW. Cancer-induced bone pain: mechanisms and models. Neuroscience Lett. 2013;557:52-9. [
DOI:10.1016/j.neulet.2013.08.003] [
PMID] [
PMCID]
97. Ni H, Xu LS, Wang Y, et al. Astrocyte activation in the periaqueductal gray promotes descending facilitation to cancer-induced bone pain through the JNK MAPK signaling pathway. Mol Pain. 2019;15:1744806919831909. [
DOI:10.1177/1744806919831909] [
PMID] [
PMCID]
98. Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene related peptide: A promising bridge between cancer development and cancer associated pain in oral squamous cell carcinoma. Oncology Lett. 2020;20(5):253. [
DOI:10.3892/ol.2020.12116] [
PMID] [
PMCID]
99. Falk S, Bannister K, Dickenson AH. Cancer pain physiology. Br J Pain. 2014;8(4):154-62. [
DOI:10.1177/2049463714545136] [
PMID] [
PMCID]
100. Zhou YQ, Liu DQ, Chen SP, et al. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol. 2018;14:391-7. [
DOI:10.1016/j.redox.2017.10.011] [
PMID] [
PMCID]