1. Ohana M, Moser T, Moussaouï A, et al. Current and future imaging of the peripheral nervous system. Diag Intervent Imag. 2014;95(1):17-26. [
DOI:10.1016/j.diii.2013.05.008] [
PMID]
2. Möller I, Miguel M, Bong DA, Zaottini F, Martinoli C. The peripheral nerves: update on ultrasound and magnetic resonance imaging. Clin Exp Rheumatol. 2018;36(Suppl 114):145-58.
3. Piña-Oviedo S, Ortiz-Hidalgo C. The normal and neoplastic perineurium: a review. Adv Aanat Pathol. 2008;15(3):147-64. [
DOI:10.1097/PAP.0b013e31816f8519] [
PMID]
4. Planitzer U, Steinke H, Meixensberger J, Bechmann I, Hammer N, Winkler D. Median nerve fascicular anatomy as a basis for distal neural prostheses. Ann Anat. 2014;196(2-3):144-9. [
DOI:10.1016/j.aanat.2013.11.002] [
PMID]
5. Stewart JD. Peripheral nerve fascicles: anatomy and clinical relevance. Muscle Nerve. 2003;28(5):525-41. [
DOI:10.1002/mus.10454] [
PMID]
6. Danafar H, Baghdadchi Y, Barsbay M, Ghaffarlou M, Mousazadeh N, Mohammadi A. Synthesis of Fe(3)O(4)-gold hybrid nanoparticles coated by bovine serum albumin as a contrast agent in MR imaging. Heliyon. 2023;9(3):e13874. [
DOI:10.1016/j.heliyon.2023.e13874] [
PMID] [
PMCID]
7. Khosravi H, Doosti-Irani A, Bouraghi H, Nikzad S. Investigation of gold nanoparticles effects in radiation therapy of cancer: A systematic review. J Adv Med Biomed Res. 2022;30(142):388-96. [
DOI:10.30699/jambs.30.142.1]
8. Maddah A, Ziamajidi N, Khosravi H, Danesh H, Abbasalipourkabir R. Gold nanoparticles induce apoptosis in HCT-116 colon cancer cell line. Molec Biol Rep. 2022;49(8):7863-71. [
DOI:10.1007/s11033-022-07616-6] [
PMID]
9. Khosravi H, Hashemi B, Mahdavi SR, Hejazi P. Target dose enhancement factor alterations related to interaction between the photon beam energy and gold nanoparticlesâ size in external radiotherapy: using monte carlo method. Koomesh. 2015;17(1):255-61.
10. Khosravi H, Mahdavi A, Rahmani F, Ebadi A. The impact of nano-sized gold particles on the target dose enhancement based on photon beams using by monte carlo method. Nanomed Res J. 2016;1(2):84-9.
11. Sayyed M, Hamad MK, Mhareb M, Prabhu NS, Khosravi H, Kamath SD. Effect of different modifiers on mechanical and radiation shielding properties of SrO-B2O3-TeO2 glass system. Optik. 2022;257:168823. [
DOI:10.1016/j.ijleo.2022.168823]
12. Zhang K, Jiang M, Fang Y. The drama of Wallerian degeneration: the cast, crew, and script. Ann Rev Genet. 2021;55:93-113. [
DOI:10.1146/annurev-genet-071819-103917] [
PMID]
13. Arthur-Farraj P, Coleman MP. Lessons from injury: How nerve injury studies reveal basic biological mechanisms and therapeutic opportunities for peripheral nerve diseases. Neurotherapeut. 2021:1-22. [
DOI:10.1007/s13311-021-01125-3] [
PMID] [
PMCID]
14. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflamm. 2011;8(1):1-13. [
DOI:10.1186/1742-2094-8-110] [
PMID] [
PMCID]
15. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019;173:102-21. [
DOI:10.1016/j.pneurobio.2018.12.001] [
PMID] [
PMCID]
16. Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell. 2015;162(5):1127-39. [
DOI:10.1016/j.cell.2015.07.021] [
PMID] [
PMCID]
17. Bombeiro AL, Pereira BTN, de Oliveira ALR. Granulocyte‐macrophage colony‐stimulating factor improves mouse peripheral nerve regeneration following sciatic nerve crush. Europ J Neurosci. 2018;48(5):2152-64. [
DOI:10.1111/ejn.14106] [
PMID]
18. Stratton JA, Holmes A, Rosin NL, et al. Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep. 2018;24(10):2561-72. e6. [
DOI:10.1016/j.celrep.2018.08.004] [
PMID]
19. Jack MM, Smith BW, Spinner RJ. Neurosurgery for the neurologist: Peripheral nerve injury and compression (What can be Fixed?). Neurol Clin. 2022;40(2):283-95. [
DOI:10.1016/j.ncl.2021.11.001] [
PMID]
20. Shores JT, Malek V, Lee WA, Brandacher G. Outcomes after hand and upper extremity transplantation. J Mater Sci Mater Med .2017;28:1-8. [
DOI:10.1007/s10856-017-5880-0] [
PMID]
21. Wolford LM, Stevao EL. Considerations in nerve repair. Proc (Bayl Univ Med Cent). 2003;16(2):152-6. [
DOI:10.1080/08998280.2003.11927897] [
PMID] [
PMCID]
22. Kong FL, Bie ZX, Wang Z, Peng JZ, Li XG. Nerve injury and regeneration after neurolysis: ethanol alone versus ethanol with brachytherapy in rabbits. J Vasc Interv Radiol. 2022.33(9):1066-1072.e1 [
DOI:10.1016/j.jvir.2022.06.006] [
PMID]
23. Charoenlux P, Utoomprurkporn N, Seresirikachorn K. The efficacy of corticosteroid after facial nerve neurorrhaphy: a systematic review and meta-analysis of randomized controlled trial. Brazil J Otorhinolaryngol. 2023;89:79-89. [
DOI:10.1016/j.bjorl.2021.09.005] [
PMID] [
PMCID]
24. Yoshioka N. Partial hypoglossal-facial end-to-end neurorrhaphy for nonflaccid facial palsy with severe hypertonicity. Interdisciplin Neurosurg. 2022;28:101484. [
DOI:10.1016/j.inat.2021.101484]
25. Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliver Rev. 2019;138:302-25. [
DOI:10.1016/j.addr.2019.01.005] [
PMID] [
PMCID]
26. Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Molec Pharmaceut. 2018;15(5):1791-9. [
DOI:10.1021/acs.molpharmaceut.7b01103] [
PMID]
27. Bjørnerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed.2004;17(7):465-77. [
DOI:10.1002/nbm.904] [
PMID]
28. Maraloiu VA, Appaix F, Broisat A, et al. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine. 2016;12(1):191-200. [
DOI:10.1016/j.nano.2015.08.005] [
PMID]
29. Oghabian MA, Gharehaghaji N, Amirmohseni S, Khoei S, Guiti M. Detection sensitivity of lymph nodes of various sizes using USPIO nanoparticles in magnetic resonance imaging. Nanomedicine. 2010;6(3):496-9. [
DOI:10.1016/j.nano.2009.11.005] [
PMID]
30. Nie Y, Rui Y, Miao C, Li Q, Hu F, Gu H. A stable USPIO capable for MR lymphography with Ultra-low effective dosage. Nanomedicine. 2020;29:102233. [
DOI:10.1016/j.nano.2020.102233] [
PMID]
31. Wu W, Zhong S, Gong Y, et al. A new molecular probe: an NRP-1 targeting probe for the grading diagnosis of glioma in nude mice. Neurosci Lett. 2020;714:134617. [
DOI:10.1016/j.neulet.2019.134617] [
PMID]
32. Liu Q, Chen S, Hao L, et al. Preparation of fluorescent bimodal probe coupled with ultra-small superparamagnetic iron oxide particles. J Radiat Res App Sci. 2022;15(2):143-8. [
DOI:10.1016/j.jrras.2022.04.009]
33. Xie T, Chen X, Fang J, et al. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging. Cytotherapy. 2021;23(3):211-22. [
DOI:10.1016/j.jcyt.2020.10.006] [
PMID]
34. Hu Q, Cao H, Zhou L, et al. Measurement of BAT activity by targeted molecular magnetic resonance imaging. Magnet Resonance Imag. 2021;77:1-6. [
DOI:10.1016/j.mri.2020.12.006] [
PMID]
35. Liu D, Zhou Z, Wang X, et al. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials. 2020;244:119979. [
DOI:10.1016/j.biomaterials.2020.119979] [
PMID] [
PMCID]
36. Kim S, Choi JY, Huh YM, et al. Role of magnetic resonance imaging in entrapment and compressive neuropathy-what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity. Europ Radiol. 2007;17(2):509-22. [
DOI:10.1007/s00330-006-0180-y] [
PMID]
37. Filler AG, Maravilla KR, Tsuruda JS. MR neurography and muscle MR imaging for image diagnosis of disorders affecting the peripheral nerves and musculature. Neurol Clin. 2004;22(3):643-82. [
DOI:10.1016/j.ncl.2004.03.005] [
PMID]
38. Moser T, Kremer S, Holl N.Imaging of the peripheral nerve: anatomy, exploration techniques and main pathologies. J Radiol.2009; 90(10):1448. [
DOI:10.1016/S0221-0363(09)75678-1]
39. Deroide N, Bousson V, Lévy BI, Laredo JD, Kubis N. Nerve and muscle imaging in peripheral nerve damage associated with electroneuromyography: the ideal couple? J Int Med. 2010; 31(4):287-94. [
DOI:10.1016/j.revmed.2009.03.021] [
PMID]
40. Mulkey SB, Glasier CM, El-Nabbout B, et al. Nerve root enhancement on spinal MRI in pediatric Guillain-Barré syndrome. Pediatr Neurol. 2010;43(4):263-9. [
DOI:10.1016/j.pediatrneurol.2010.05.011] [
PMID]
41. Stanisz GJ, Midha R, Munro CA, Henkelman RM. MR properties of rat sciatic nerve following trauma. Magnet Reson Med. 2001;45(3):415-20. [
DOI:10.1002/1522-2594(200103)45:33.0.CO;2-M] [
PMID]
42. Bendszus M, Wessig C, Solymosi L, Reiners K, Koltzenburg M. MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology. Experiment Neurol. 2004;188(1):171-7. [
DOI:10.1016/j.expneurol.2004.03.025] [
PMID]
43. Bendszus M, Koltzenburg M, Wessig C, Solymosi L. Sequential MR imaging of denervated muscle: experimental study. Am J Neuroradiol. 2002;23(8):1427-31.
44. Kamath S, Venkatanarasimha N, Walsh M, Hughes P. MRI appearance of muscle denervation. Skelet Radiol. 2008;37(5):397-404. [
DOI:10.1007/s00256-007-0409-0] [
PMID]
45. Chhabra A, Soldatos T, Subhawong TK, et al. The application of three‐dimensional diffusion‐weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magnet Reson Imag. 2011;34(4):962-7. [
DOI:10.1002/jmri.22684] [
PMID]
46. Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T. 3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skelet Radiol. 2011;40(10):1355-60. [
DOI:10.1007/s00256-011-1162-y] [
PMID]
47. Chhabra A, Soldatos T, Flammang A, Gilson W, Padua A, Carrino JA. 3T MR imaging of peripheral nerves using 3D diffusion-weighted PSIF technique. 2010.
48. Freund W, Brinkmann A, Wagner F, et al. MR neurography with multiplanar reconstruction of 3D MRI datasets: an anatomical study and clinical applications. Neuroradiol. 2007;49(4):335-41. [
DOI:10.1007/s00234-006-0197-6] [
PMID]
49. Viallon M, Vargas M, Jlassi H, Lövblad KO, Delavelle J. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Europ Radiol. 2008;18(5):1018-23. [
DOI:10.1007/s00330-007-0834-4] [
PMID]
50. Zare M, Faeghi F, Hosseini A, Ardekani MS, Heidari MH, Zarei E. Comparison between three-dimensional diffusion-weighted PSIF technique and routine imaging sequences in evaluation of peripheral nerves in healthy people. Basic Clin Neurosci. 2018;9(1):65. [
DOI:10.29252/nirp.bcn.9.1.65] [
PMID] [
PMCID]
51. Tereshenko V, Pashkunova-Martic I, Manzano-Szalai K, et al. MR imaging of peripheral nerves using targeted application of contrast agents: An experimental proof-of-concept study. Front Med. 2020;7:613138. [
DOI:10.3389/fmed.2020.613138] [
PMID] [
PMCID]
52. Bendszus M, Stoll G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci. 2003;23(34):10892-6. [
DOI:10.1523/JNEUROSCI.23-34-10892.2003] [
PMID] [
PMCID]
53. Bendszus M, Wessig C, Schütz A, et al. Assessment of nerve degeneration by gadofluorine M-enhanced magnetic resonance imaging. Ann Neurol. 2005;57(3):388-95. [
DOI:10.1002/ana.20404] [
PMID]
54. Kobayashi S, Meir A, Baba H, Uchida K, Hayakawa K. Imaging of intraneural edema by using gadolinium-enhanced MR imaging: experimental compression injury. Am J Neuroradiol. 2005;26(4):973-80.
55. Bouldin TW, Earnhardt TS, Goines ND. Restoration of blood-nerve barrier in neuropathy is associated with axonal regeneration and remyelination. J Neuropathol Exp Neurol. 1991;50(6):719-28. [
DOI:10.1097/00005072-199111000-00004] [
PMID]
56. Omura K, Ohbayashi M, Sano M, Omura T, Hasegawa T, Nagano A. The recovery of blood-nerve barrier in crush nerve injury-a quantitative analysis utilizing immunohistochemistry. Brain Res. 2004;1001(1-2):13-21. [
DOI:10.1016/j.brainres.2003.10.067] [
PMID]
57. Spees WM, Lin TH, Sun P, et al. MRI-based assessment of function and dysfunction in myelinated axons. Proc Nat Acad Sci USA. 2018;115(43):E10225-E34. [
DOI:10.1073/pnas.1801788115] [
PMID] [
PMCID]
58. Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiograph. 2019;39(2):427-46. [
DOI:10.1148/rg.2019180112] [
PMID]
59. de Figueiredo EH, Borgonovi AF, Doring TM. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging. Magn Reson Imaging Clin N Am. 2011;19(1):1-22. [
DOI:10.1016/j.mric.2010.10.005] [
PMID]
60. De Vuysere S, Vandecaveye V, De Bruecker Y, et al. Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: a pilot study. BMC Med Imag. 2021;21(1):1-9. [
DOI:10.1186/s12880-021-00550-2] [
PMID] [
PMCID]
61. Takahara T, Hendrikse J, Kwee TC, et al. Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol. 2010;20(5):1221-6. [
DOI:10.1007/s00330-009-1665-2] [
PMID] [
PMCID]
62. Bae YJ, Choi BS, Jeong HK, Sunwoo L, Jung C, Kim JH. Diffusion-weighted imaging of the head and neck: Influence of fat-suppression technique and multishot 2D navigated interleaved acquisitions. AJNR Am J Neuroradiol. 2018;39(1):145-50. [
DOI:10.3174/ajnr.A5426] [
PMID] [
PMCID]
63. Takahara T, Hendrikse J, Yamashita T, et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiol. 2008;249(2):653-60. [
DOI:10.1148/radiol.2492071826] [
PMID]
64. Koike H, Nishida Y, Ito S, et al. Diffusion-weighted magnetic resonance imaging improves the accuracy of differentiation of benign from malignant peripheral nerve sheath tumors. World Neurosurg. 2022;157:e207-e14. [
DOI:10.1016/j.wneu.2021.09.130] [
PMID]
65. Haakma W, Dik P, ten Haken B, et al. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida. J Urol. 2014;192(3):927-33. [
DOI:10.1016/j.juro.2014.02.2581] [
PMID]
66. Farinas AF, Esteve IVM, Pollins AC, et al. Diffusion MRI predicts peripheral nerve recovery in a rat sciatic nerve injury model. Plast Reconstruct Surg. 2020;145(4):949. [
DOI:10.1097/PRS.0000000000006638] [
PMID] [
PMCID]
67. Schmid AB, Campbell J, Hurley SA, et al. Feasibility of diffusion tensor and morphologic imaging of peripheral nerves at ultra-high field strength. Investig Radiol. 2018;53(12):705. [
DOI:10.1097/RLI.0000000000000492] [
PMID] [
PMCID]
68. Chiang CW, Wang Y, et al. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage. 2014;101:310-9. [
DOI:10.1016/j.neuroimage.2014.06.064] [
PMID] [
PMCID]
69. Sun C, Hou Z, Hong G, Wan Q, Li X. In vivo evaluation of sciatic nerve crush injury using diffusion tensor imaging: correlation with nerve function and histology. J Comput Assist Tomograph. 2014;38(5):790-6. [
DOI:10.1097/RCT.0000000000001035] [
PMID]
70. Yamasaki T, Fujiwara H, Oda R, et al. In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magnet Reson Imag. 2015;33(1):95-101. [
DOI:10.1016/j.mri.2014.09.005] [
PMID]
71. Heckel A, Weiler M, Xia A, et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015;10(6):e0130833. [
DOI:10.1371/journal.pone.0130833] [
PMID] [
PMCID]
72. de Noordhout AM. Usefulness of ultrasonography, MRI and CT scan in the diagnosis of entrapment neuropathies. Rev Neurol (Paris). 2007;163(12):1263-5. [
DOI:10.1016/S0035-3787(07)78417-5] [
PMID]
73. Pilavaki M, Chourmouzi D, Kiziridou A, Skordalaki A, Zarampoukas T, Drevelengas A. Imaging of peripheral nerve sheath tumors with pathologic correlation: pictorial review. Eur J Radiol. 2004;52(3):229-39. [
DOI:10.1016/j.ejrad.2003.12.001] [
PMID]
74. Mandalà S, Lupo M, Guccione M, La Barbera C, Iadicola D, Mirabella A. Small bowel gastrointestinal stromal tumor presenting with gastrointestinal bleeding in patient with type 1 Neurofibromatosis: Management and laparoscopic treatment. Case report and review of the literature. Int J Surg Case Rep. 2021;79:84-90. [
DOI:10.1016/j.ijscr.2020.12.095] [
PMID] [
PMCID]
75. Rimeika G, Saba L, Arthimulam G, et al. Metanalysis on the effectiveness of low back pain treatment with oxygen-ozone mixture: Comparison between image-guided and non-image-guided injection techniques. Europ J Radiol Open. 2021;8:100389. [
DOI:10.1016/j.ejro.2021.100389] [
PMID] [
PMCID]
76. Koob M, Dietemann JL. Imaging of peripheral lesions of type 1 neurofibromatosis. J Radiol. 2009; 90(10):1448-9. [
DOI:10.1016/S0221-0363(09)75679-3]
77. Yan D, Jiman AA, Bottorff EC, et al. Ultraflexible and stretchable intrafascicular peripheral nerve recording device with axon‐dimension, cuff‐less microneedle electrode array. Small. 2022:2200311. [
DOI:10.1101/2022.01.19.476928]
78. Jin Z, Zhao K, Guo W, Wang D, Deng Y, Chen T. Investigation of ultrasound parameters for the differential diagnosis of malignant and benign peripheral nerve sheath tumors. J Ultrasound Med. 2022. [
DOI:10.1002/jum.16089] [
PMID]
79. Zhu Y, Jin Z, Wang J, et al. Ultrasound-guided platelet-rich plasma injection and multimodality ultrasound examination of peripheral nerve crush injury. NPJ Regenerat Med. 2020;5(1):1-13. [
DOI:10.1038/s41536-020-00101-3] [
PMID] [
PMCID]
80. Winter N, Dohrn MF, Wittlinger J, Loizides A, Gruber H, Grimm A. Role of high-resolution ultrasound in detection and monitoring of peripheral nerve tumor burden in neurofibromatosis in children. Child Nerv Syst. 2020;36(10):2427-32. [
DOI:10.1007/s00381-020-04718-z] [
PMID] [
PMCID]
81. Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370-9. [
DOI:10.1097/WCO.0000000000000111] [
PMID]
82. Kamble N, Shukla D, Bhat D. Peripheral nerve injuries: Electrophysiology for the neurosurgeon. Neurol India. 2019;67(6):1419-22. [
DOI:10.4103/0028-3886.273626] [
PMID]
83. Endo Y, Miller TT, Sneag DB. Imaging of the peripheral nerves of the lower extremity. Radiol Clin North Am. 2023;61(2):381-92. [
DOI:10.1016/j.rcl.2022.10.011] [
PMID]
84. Wade RG, Whittam A, Teh I, et al. Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imag. 2020;8(6):419-31. [
DOI:10.1007/s40336-020-00393-x] [
PMID] [
PMCID]
85. Donaldson EK, Winter JM, Chandler RM, Clark TA, Giuffre JL. Malignant peripheral nerve sheath tumors of the brachial plexus: A single-center experience on diagnosis, management, and outcomes. Ann Plast Surg. 2023;90(4):339-42. [
DOI:10.1097/SAP.0000000000003462] [
PMID]
86. Samet JD. Ultrasound of peripheral nerve injury. Pediatr Radiol. 2023. [
DOI:10.1007/s00247-023-05631-8] [
PMID]
87. Jerban S, Barrère V, Andre M, Chang EY, Shah SB. Quantitative Ultrasound Techniques Used for Peripheral Nerve Assessment. Diagnostics (Basel). 2023;13(5). [
DOI:10.3390/diagnostics13050956] [
PMID] [
PMCID]
88. Sneag DB, Queler S. Technological Advancements in Magnetic Resonance Neurography. Curr Neurol Neurosci Rep. 2019;19(10):75. [
DOI:10.1007/s11910-019-0996-x] [
PMID]