دوره 31، شماره 148 - ( 8-1402 )                   جلد 31 شماره 148 صفحات 431-415 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi Shah-abadi M, Ariaei A, Mohammadi H, Shabani A, Rahmani Tanha R, Tavakolian Ferdousie V, et al . Recent Advances and Future Directions in Imaging of Peripheral Nervous System: A Comprehensive Review for Therapeutics Approach. J Adv Med Biomed Res 2023; 31 (148) :415-431
URL: http://journal.zums.ac.ir/article-1-7149-fa.html
Recent Advances and Future Directions in Imaging of Peripheral Nervous System: A Comprehensive Review for Therapeutics Approach. Journal of Advances in Medical and Biomedical Research. 1402; 31 (148) :415-431

URL: http://journal.zums.ac.ir/article-1-7149-fa.html


چکیده:   (1725 مشاهده)

PNS (Peripheral nervous system) disease comprises a wide range of manifestations from acruable damage to nerve body degeneration. Finding proper imaging sequences of MRI (Magnetic Resonance Imaging) to maximize the detection sensitivity and specificity of PNS injuries, is the purpose for which this study was conducted. In this regard, due to Wallerian degeneration, axonal degeneration and inflammation after nerve injury, were mentioned as the inseparable factors of nerve damage, and clues to be detected by the MRI. Gadofluorine M and USPIO nanoparticles are candidates which provide contrast in multiple aspects, such as diagnostic approaches and drug tracking. For instance, the P904 USPIO particle is proper for long-term monitoring, while the CS015 (PAA-coated USPIO), USPIO-PEG-tLyP-1, and USPIO nanovesicles are appropriate for drug delivery. Besides contrast agents, the implication of gradient echo or 3D DW-PSIF provides more precious data over conventional sequences, including T2-weighed on the physiological or pathological PNS status. Eventually, although the real-time imaging and simplified procedure of the ultrasound technique have advantages over MRI, the low-resolution disvalues its benefits. Alternatively, there is a growing trend in the application of Diffusion-weighted imaging (DWI) to acquire a clear concept of disease diagnosis, along with Diffusion tensor imaging (DTI) to successfully monitor the rate of nerve regeneration that is applicable for therapeutic approaches.

متن کامل [PDF 835 kb]   (835 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: Clinical medicine
دریافت: 1401/11/27 | پذیرش: 1402/3/30 | انتشار: 1402/8/7

فهرست منابع
1. Ohana M, Moser T, Moussaouï A, et al. Current and future imaging of the peripheral nervous system. Diag Intervent Imag. 2014;95(1):17-26. [DOI:10.1016/j.diii.2013.05.008] [PMID]
2. Möller I, Miguel M, Bong DA, Zaottini F, Martinoli C. The peripheral nerves: update on ultrasound and magnetic resonance imaging. Clin Exp Rheumatol. 2018;36(Suppl 114):145-58.
3. Piña-Oviedo S, Ortiz-Hidalgo C. The normal and neoplastic perineurium: a review. Adv Aanat Pathol. 2008;15(3):147-64. [DOI:10.1097/PAP.0b013e31816f8519] [PMID]
4. Planitzer U, Steinke H, Meixensberger J, Bechmann I, Hammer N, Winkler D. Median nerve fascicular anatomy as a basis for distal neural prostheses. Ann Anat. 2014;196(2-3):144-9. [DOI:10.1016/j.aanat.2013.11.002] [PMID]
5. Stewart JD. Peripheral nerve fascicles: anatomy and clinical relevance. Muscle Nerve. 2003;28(5):525-41. [DOI:10.1002/mus.10454] [PMID]
6. Danafar H, Baghdadchi Y, Barsbay M, Ghaffarlou M, Mousazadeh N, Mohammadi A. Synthesis of Fe(3)O(4)-gold hybrid nanoparticles coated by bovine serum albumin as a contrast agent in MR imaging. Heliyon. 2023;9(3):e13874. [DOI:10.1016/j.heliyon.2023.e13874] [PMID] [PMCID]
7. Khosravi H, Doosti-Irani A, Bouraghi H, Nikzad S. Investigation of gold nanoparticles effects in radiation therapy of cancer: A systematic review. J Adv Med Biomed Res. 2022;30(142):388-96. [DOI:10.30699/jambs.30.142.1]
8. Maddah A, Ziamajidi N, Khosravi H, Danesh H, Abbasalipourkabir R. Gold nanoparticles induce apoptosis in HCT-116 colon cancer cell line. Molec Biol Rep. 2022;49(8):7863-71. [DOI:10.1007/s11033-022-07616-6] [PMID]
9. Khosravi H, Hashemi B, Mahdavi SR, Hejazi P. Target dose enhancement factor alterations related to interaction between the photon beam energy and gold nanoparticlesâ size in external radiotherapy: using monte carlo method. Koomesh. 2015;17(1):255-61.
10. Khosravi H, Mahdavi A, Rahmani F, Ebadi A. The impact of nano-sized gold particles on the target dose enhancement based on photon beams using by monte carlo method. Nanomed Res J. 2016;1(2):84-9.
11. Sayyed M, Hamad MK, Mhareb M, Prabhu NS, Khosravi H, Kamath SD. Effect of different modifiers on mechanical and radiation shielding properties of SrO-B2O3-TeO2 glass system. Optik. 2022;257:168823. [DOI:10.1016/j.ijleo.2022.168823]
12. Zhang K, Jiang M, Fang Y. The drama of Wallerian degeneration: the cast, crew, and script. Ann Rev Genet. 2021;55:93-113. [DOI:10.1146/annurev-genet-071819-103917] [PMID]
13. Arthur-Farraj P, Coleman MP. Lessons from injury: How nerve injury studies reveal basic biological mechanisms and therapeutic opportunities for peripheral nerve diseases. Neurotherapeut. 2021:1-22. [DOI:10.1007/s13311-021-01125-3] [PMID] [PMCID]
14. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflamm. 2011;8(1):1-13. [DOI:10.1186/1742-2094-8-110] [PMID] [PMCID]
15. Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019;173:102-21. [DOI:10.1016/j.pneurobio.2018.12.001] [PMID] [PMCID]
16. Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell. 2015;162(5):1127-39. [DOI:10.1016/j.cell.2015.07.021] [PMID] [PMCID]
17. Bombeiro AL, Pereira BTN, de Oliveira ALR. Granulocyte‐macrophage colony‐stimulating factor improves mouse peripheral nerve regeneration following sciatic nerve crush. Europ J Neurosci. 2018;48(5):2152-64. [DOI:10.1111/ejn.14106] [PMID]
18. Stratton JA, Holmes A, Rosin NL, et al. Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep. 2018;24(10):2561-72. e6. [DOI:10.1016/j.celrep.2018.08.004] [PMID]
19. Jack MM, Smith BW, Spinner RJ. Neurosurgery for the neurologist: Peripheral nerve injury and compression (What can be Fixed?). Neurol Clin. 2022;40(2):283-95. [DOI:10.1016/j.ncl.2021.11.001] [PMID]
20. Shores JT, Malek V, Lee WA, Brandacher G. Outcomes after hand and upper extremity transplantation. J Mater Sci Mater Med .2017;28:1-8. [DOI:10.1007/s10856-017-5880-0] [PMID]
21. Wolford LM, Stevao EL. Considerations in nerve repair. Proc (Bayl Univ Med Cent). 2003;16(2):152-6. [DOI:10.1080/08998280.2003.11927897] [PMID] [PMCID]
22. Kong FL, Bie ZX, Wang Z, Peng JZ, Li XG. Nerve injury and regeneration after neurolysis: ethanol alone versus ethanol with brachytherapy in rabbits. J Vasc Interv Radiol. 2022.33(9):1066-1072.e1 [DOI:10.1016/j.jvir.2022.06.006] [PMID]
23. Charoenlux P, Utoomprurkporn N, Seresirikachorn K. The efficacy of corticosteroid after facial nerve neurorrhaphy: a systematic review and meta-analysis of randomized controlled trial. Brazil J Otorhinolaryngol. 2023;89:79-89. [DOI:10.1016/j.bjorl.2021.09.005] [PMID] [PMCID]
24. Yoshioka N. Partial hypoglossal-facial end-to-end neurorrhaphy for nonflaccid facial palsy with severe hypertonicity. Interdisciplin Neurosurg. 2022;28:101484. [DOI:10.1016/j.inat.2021.101484]
25. Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliver Rev. 2019;138:302-25. [DOI:10.1016/j.addr.2019.01.005] [PMID] [PMCID]
26. Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Molec Pharmaceut. 2018;15(5):1791-9. [DOI:10.1021/acs.molpharmaceut.7b01103] [PMID]
27. Bjørnerud A, Johansson L. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed.2004;17(7):465-77. [DOI:10.1002/nbm.904] [PMID]
28. Maraloiu VA, Appaix F, Broisat A, et al. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine. 2016;12(1):191-200. [DOI:10.1016/j.nano.2015.08.005] [PMID]
29. Oghabian MA, Gharehaghaji N, Amirmohseni S, Khoei S, Guiti M. Detection sensitivity of lymph nodes of various sizes using USPIO nanoparticles in magnetic resonance imaging. Nanomedicine. 2010;6(3):496-9. [DOI:10.1016/j.nano.2009.11.005] [PMID]
30. Nie Y, Rui Y, Miao C, Li Q, Hu F, Gu H. A stable USPIO capable for MR lymphography with Ultra-low effective dosage. Nanomedicine. 2020;29:102233. [DOI:10.1016/j.nano.2020.102233] [PMID]
31. Wu W, Zhong S, Gong Y, et al. A new molecular probe: an NRP-1 targeting probe for the grading diagnosis of glioma in nude mice. Neurosci Lett. 2020;714:134617. [DOI:10.1016/j.neulet.2019.134617] [PMID]
32. Liu Q, Chen S, Hao L, et al. Preparation of fluorescent bimodal probe coupled with ultra-small superparamagnetic iron oxide particles. J Radiat Res App Sci. 2022;15(2):143-8. [DOI:10.1016/j.jrras.2022.04.009]
33. Xie T, Chen X, Fang J, et al. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging. Cytotherapy. 2021;23(3):211-22. [DOI:10.1016/j.jcyt.2020.10.006] [PMID]
34. Hu Q, Cao H, Zhou L, et al. Measurement of BAT activity by targeted molecular magnetic resonance imaging. Magnet Resonance Imag. 2021;77:1-6. [DOI:10.1016/j.mri.2020.12.006] [PMID]
35. Liu D, Zhou Z, Wang X, et al. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials. 2020;244:119979. [DOI:10.1016/j.biomaterials.2020.119979] [PMID] [PMCID]
36. Kim S, Choi JY, Huh YM, et al. Role of magnetic resonance imaging in entrapment and compressive neuropathy-what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity. Europ Radiol. 2007;17(2):509-22. [DOI:10.1007/s00330-006-0180-y] [PMID]
37. Filler AG, Maravilla KR, Tsuruda JS. MR neurography and muscle MR imaging for image diagnosis of disorders affecting the peripheral nerves and musculature. Neurol Clin. 2004;22(3):643-82. [DOI:10.1016/j.ncl.2004.03.005] [PMID]
38. Moser T, Kremer S, Holl N.Imaging of the peripheral nerve: anatomy, exploration techniques and main pathologies. J Radiol.2009; 90(10):1448. [DOI:10.1016/S0221-0363(09)75678-1]
39. Deroide N, Bousson V, Lévy BI, Laredo JD, Kubis N. Nerve and muscle imaging in peripheral nerve damage associated with electroneuromyography: the ideal couple? J Int Med. 2010; 31(4):287-94. [DOI:10.1016/j.revmed.2009.03.021] [PMID]
40. Mulkey SB, Glasier CM, El-Nabbout B, et al. Nerve root enhancement on spinal MRI in pediatric Guillain-Barré syndrome. Pediatr Neurol. 2010;43(4):263-9. [DOI:10.1016/j.pediatrneurol.2010.05.011] [PMID]
41. Stanisz GJ, Midha R, Munro CA, Henkelman RM. MR properties of rat sciatic nerve following trauma. Magnet Reson Med. 2001;45(3):415-20. [DOI:10.1002/1522-2594(200103)45:33.0.CO;2-M] [PMID]
42. Bendszus M, Wessig C, Solymosi L, Reiners K, Koltzenburg M. MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology. Experiment Neurol. 2004;188(1):171-7. [DOI:10.1016/j.expneurol.2004.03.025] [PMID]
43. Bendszus M, Koltzenburg M, Wessig C, Solymosi L. Sequential MR imaging of denervated muscle: experimental study. Am J Neuroradiol. 2002;23(8):1427-31.
44. Kamath S, Venkatanarasimha N, Walsh M, Hughes P. MRI appearance of muscle denervation. Skelet Radiol. 2008;37(5):397-404. [DOI:10.1007/s00256-007-0409-0] [PMID]
45. Chhabra A, Soldatos T, Subhawong TK, et al. The application of three‐dimensional diffusion‐weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magnet Reson Imag. 2011;34(4):962-7. [DOI:10.1002/jmri.22684] [PMID]
46. Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T. 3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skelet Radiol. 2011;40(10):1355-60. [DOI:10.1007/s00256-011-1162-y] [PMID]
47. Chhabra A, Soldatos T, Flammang A, Gilson W, Padua A, Carrino JA. 3T MR imaging of peripheral nerves using 3D diffusion-weighted PSIF technique. 2010.
48. Freund W, Brinkmann A, Wagner F, et al. MR neurography with multiplanar reconstruction of 3D MRI datasets: an anatomical study and clinical applications. Neuroradiol. 2007;49(4):335-41. [DOI:10.1007/s00234-006-0197-6] [PMID]
49. Viallon M, Vargas M, Jlassi H, Lövblad KO, Delavelle J. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Europ Radiol. 2008;18(5):1018-23. [DOI:10.1007/s00330-007-0834-4] [PMID]
50. Zare M, Faeghi F, Hosseini A, Ardekani MS, Heidari MH, Zarei E. Comparison between three-dimensional diffusion-weighted PSIF technique and routine imaging sequences in evaluation of peripheral nerves in healthy people. Basic Clin Neurosci. 2018;9(1):65. [DOI:10.29252/nirp.bcn.9.1.65] [PMID] [PMCID]
51. Tereshenko V, Pashkunova-Martic I, Manzano-Szalai K, et al. MR imaging of peripheral nerves using targeted application of contrast agents: An experimental proof-of-concept study. Front Med. 2020;7:613138. [DOI:10.3389/fmed.2020.613138] [PMID] [PMCID]
52. Bendszus M, Stoll G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci. 2003;23(34):10892-6. [DOI:10.1523/JNEUROSCI.23-34-10892.2003] [PMID] [PMCID]
53. Bendszus M, Wessig C, Schütz A, et al. Assessment of nerve degeneration by gadofluorine M-enhanced magnetic resonance imaging. Ann Neurol. 2005;57(3):388-95. [DOI:10.1002/ana.20404] [PMID]
54. Kobayashi S, Meir A, Baba H, Uchida K, Hayakawa K. Imaging of intraneural edema by using gadolinium-enhanced MR imaging: experimental compression injury. Am J Neuroradiol. 2005;26(4):973-80.
55. Bouldin TW, Earnhardt TS, Goines ND. Restoration of blood-nerve barrier in neuropathy is associated with axonal regeneration and remyelination. J Neuropathol Exp Neurol. 1991;50(6):719-28. [DOI:10.1097/00005072-199111000-00004] [PMID]
56. Omura K, Ohbayashi M, Sano M, Omura T, Hasegawa T, Nagano A. The recovery of blood-nerve barrier in crush nerve injury-a quantitative analysis utilizing immunohistochemistry. Brain Res. 2004;1001(1-2):13-21. [DOI:10.1016/j.brainres.2003.10.067] [PMID]
57. Spees WM, Lin TH, Sun P, et al. MRI-based assessment of function and dysfunction in myelinated axons. Proc Nat Acad Sci USA. 2018;115(43):E10225-E34. [DOI:10.1073/pnas.1801788115] [PMID] [PMCID]
58. Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiograph. 2019;39(2):427-46. [DOI:10.1148/rg.2019180112] [PMID]
59. de Figueiredo EH, Borgonovi AF, Doring TM. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging. Magn Reson Imaging Clin N Am. 2011;19(1):1-22. [DOI:10.1016/j.mric.2010.10.005] [PMID]
60. De Vuysere S, Vandecaveye V, De Bruecker Y, et al. Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: a pilot study. BMC Med Imag. 2021;21(1):1-9. [DOI:10.1186/s12880-021-00550-2] [PMID] [PMCID]
61. Takahara T, Hendrikse J, Kwee TC, et al. Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol. 2010;20(5):1221-6. [DOI:10.1007/s00330-009-1665-2] [PMID] [PMCID]
62. Bae YJ, Choi BS, Jeong HK, Sunwoo L, Jung C, Kim JH. Diffusion-weighted imaging of the head and neck: Influence of fat-suppression technique and multishot 2D navigated interleaved acquisitions. AJNR Am J Neuroradiol. 2018;39(1):145-50. [DOI:10.3174/ajnr.A5426] [PMID] [PMCID]
63. Takahara T, Hendrikse J, Yamashita T, et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiol. 2008;249(2):653-60. [DOI:10.1148/radiol.2492071826] [PMID]
64. Koike H, Nishida Y, Ito S, et al. Diffusion-weighted magnetic resonance imaging improves the accuracy of differentiation of benign from malignant peripheral nerve sheath tumors. World Neurosurg. 2022;157:e207-e14. [DOI:10.1016/j.wneu.2021.09.130] [PMID]
65. Haakma W, Dik P, ten Haken B, et al. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida. J Urol. 2014;192(3):927-33. [DOI:10.1016/j.juro.2014.02.2581] [PMID]
66. Farinas AF, Esteve IVM, Pollins AC, et al. Diffusion MRI predicts peripheral nerve recovery in a rat sciatic nerve injury model. Plast Reconstruct Surg. 2020;145(4):949. [DOI:10.1097/PRS.0000000000006638] [PMID] [PMCID]
67. Schmid AB, Campbell J, Hurley SA, et al. Feasibility of diffusion tensor and morphologic imaging of peripheral nerves at ultra-high field strength. Investig Radiol. 2018;53(12):705. [DOI:10.1097/RLI.0000000000000492] [PMID] [PMCID]
68. Chiang CW, Wang Y, et al. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage. 2014;101:310-9. [DOI:10.1016/j.neuroimage.2014.06.064] [PMID] [PMCID]
69. Sun C, Hou Z, Hong G, Wan Q, Li X. In vivo evaluation of sciatic nerve crush injury using diffusion tensor imaging: correlation with nerve function and histology. J Comput Assist Tomograph. 2014;38(5):790-6. [DOI:10.1097/RCT.0000000000001035] [PMID]
70. Yamasaki T, Fujiwara H, Oda R, et al. In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magnet Reson Imag. 2015;33(1):95-101. [DOI:10.1016/j.mri.2014.09.005] [PMID]
71. Heckel A, Weiler M, Xia A, et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015;10(6):e0130833. [DOI:10.1371/journal.pone.0130833] [PMID] [PMCID]
72. de Noordhout AM. Usefulness of ultrasonography, MRI and CT scan in the diagnosis of entrapment neuropathies. Rev Neurol (Paris). 2007;163(12):1263-5. [DOI:10.1016/S0035-3787(07)78417-5] [PMID]
73. Pilavaki M, Chourmouzi D, Kiziridou A, Skordalaki A, Zarampoukas T, Drevelengas A. Imaging of peripheral nerve sheath tumors with pathologic correlation: pictorial review. Eur J Radiol. 2004;52(3):229-39. [DOI:10.1016/j.ejrad.2003.12.001] [PMID]
74. Mandalà S, Lupo M, Guccione M, La Barbera C, Iadicola D, Mirabella A. Small bowel gastrointestinal stromal tumor presenting with gastrointestinal bleeding in patient with type 1 Neurofibromatosis: Management and laparoscopic treatment. Case report and review of the literature. Int J Surg Case Rep. 2021;79:84-90. [DOI:10.1016/j.ijscr.2020.12.095] [PMID] [PMCID]
75. Rimeika G, Saba L, Arthimulam G, et al. Metanalysis on the effectiveness of low back pain treatment with oxygen-ozone mixture: Comparison between image-guided and non-image-guided injection techniques. Europ J Radiol Open. 2021;8:100389. [DOI:10.1016/j.ejro.2021.100389] [PMID] [PMCID]
76. Koob M, Dietemann JL. Imaging of peripheral lesions of type 1 neurofibromatosis. J Radiol. 2009; 90(10):1448-9. [DOI:10.1016/S0221-0363(09)75679-3]
77. Yan D, Jiman AA, Bottorff EC, et al. Ultraflexible and stretchable intrafascicular peripheral nerve recording device with axon‐dimension, cuff‐less microneedle electrode array. Small. 2022:2200311. [DOI:10.1101/2022.01.19.476928]
78. Jin Z, Zhao K, Guo W, Wang D, Deng Y, Chen T. Investigation of ultrasound parameters for the differential diagnosis of malignant and benign peripheral nerve sheath tumors. J Ultrasound Med. 2022. [DOI:10.1002/jum.16089] [PMID]
79. Zhu Y, Jin Z, Wang J, et al. Ultrasound-guided platelet-rich plasma injection and multimodality ultrasound examination of peripheral nerve crush injury. NPJ Regenerat Med. 2020;5(1):1-13. [DOI:10.1038/s41536-020-00101-3] [PMID] [PMCID]
80. Winter N, Dohrn MF, Wittlinger J, Loizides A, Gruber H, Grimm A. Role of high-resolution ultrasound in detection and monitoring of peripheral nerve tumor burden in neurofibromatosis in children. Child Nerv Syst. 2020;36(10):2427-32. [DOI:10.1007/s00381-020-04718-z] [PMID] [PMCID]
81. Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370-9. [DOI:10.1097/WCO.0000000000000111] [PMID]
82. Kamble N, Shukla D, Bhat D. Peripheral nerve injuries: Electrophysiology for the neurosurgeon. Neurol India. 2019;67(6):1419-22. [DOI:10.4103/0028-3886.273626] [PMID]
83. Endo Y, Miller TT, Sneag DB. Imaging of the peripheral nerves of the lower extremity. Radiol Clin North Am. 2023;61(2):381-92. [DOI:10.1016/j.rcl.2022.10.011] [PMID]
84. Wade RG, Whittam A, Teh I, et al. Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imag. 2020;8(6):419-31. [DOI:10.1007/s40336-020-00393-x] [PMID] [PMCID]
85. Donaldson EK, Winter JM, Chandler RM, Clark TA, Giuffre JL. Malignant peripheral nerve sheath tumors of the brachial plexus: A single-center experience on diagnosis, management, and outcomes. Ann Plast Surg. 2023;90(4):339-42. [DOI:10.1097/SAP.0000000000003462] [PMID]
86. Samet JD. Ultrasound of peripheral nerve injury. Pediatr Radiol. 2023. [DOI:10.1007/s00247-023-05631-8] [PMID]
87. Jerban S, Barrère V, Andre M, Chang EY, Shah SB. Quantitative Ultrasound Techniques Used for Peripheral Nerve Assessment. Diagnostics (Basel). 2023;13(5). [DOI:10.3390/diagnostics13050956] [PMID] [PMCID]
88. Sneag DB, Queler S. Technological Advancements in Magnetic Resonance Neurography. Curr Neurol Neurosci Rep. 2019;19(10):75. [DOI:10.1007/s11910-019-0996-x] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb