1. Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Asp Med. 2023;93:101205. [
DOI:10.1016/j.mam.2023.101205] [
PMID]
2. De Angelis A, Cappetta D, Berrino L, Urbanek K. Doxorubicin cardiotoxicity: multiple targets and translational perspectives. Cardiotoxicity. 2018;2:25-46. [
DOI:10.5772/intechopen.80057]
3. Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol. 2018;14(25):2663-76. [
DOI:10.2217/fon-2018-0210] [
PMID]
4. Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed pharmacother. 2022;156:113903. [
DOI:10.1016/j.biopha.2022.113903] [
PMID]
5. Vejpongsa P, Yeh E. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline‐induced cardiotoxicity. Clin Pharm Therap. 2014;95(1):45-52. [
DOI:10.1038/clpt.2013.201] [
PMID]
6. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Clin Pharm Therap. 2021;139:111708. [
DOI:10.1016/j.biopha.2021.111708] [
PMID]
7. Zhang X, Yu Y, Lei H, Cai Y, Shen J, Zhu P, et al. The Nrf‐2/HO‐1 signaling Axis: A ray of Hope in cardiovascular diseases. Cardiol Res Pract. 2020;2020(1):5695723. [
DOI:10.1155/2020/5695723] [
PMID] [
PMCID]
8. Singh N, Sharma B. Biotoxins mediated DNA damage and role of phytochemicals in DNA protection. Biochem Mol Biol J. 2018;4(5):1-3. [
DOI:10.21767/2471-8084.100054]
9. Zhao Z, He X, Zhang Q, Wei X, Huang L, Fang JC, et al. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Sanguisorba L. Am J Chin Med. 2017;45(02):199-224. [
DOI:10.1142/S0192415X17500136] [
PMID]
10. Finimundy TC, Karkanis A, Fernandes Â, Petropoulos SA, Calhelha R, Petrović J, et al. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020;327:127043. [
DOI:10.1016/j.foodchem.2020.127043] [
PMID]
11. Ćirović N, Barjaktarevic A, Ninkovic M, Bauer R, NIKLES S, Branković S, et al. Biological activities of sanguisorba minor l. extracts ñ in vitro and in vivo evaluations. Acta Pol Pharm Drug Res. 2021;77(5):745-58. [
DOI:10.32383/appdr/127765] [
PMID]
12. Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol. 2010;649(1-3):210-7. [
DOI:10.1016/j.ejphar.2010.09.001] [
PMID]
13. Tocai AC, Ranga F, Teodorescu AG, Pallag A, Vlad AM, Bandici L, et al. Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba minor Scop. Plants. 2022;11(24):3561. [
DOI:10.3390/plants11243561] [
PMID] [
PMCID]
14. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67-74. [
DOI:10.1016/j.biopha.2017.10.064] [
PMID]
15. Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, et al. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med. 2023;13(4):649. [
DOI:10.3390/jpm13040649] [
PMID] [
PMCID]
16. Wang D, Tian L, Lv H, Pang Z, Li D, Yao Z, et al. Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. Biomed Pharmacother. 2020;132:110773. [
DOI:10.1016/j.biopha.2020.110773] [
PMID]
17. Akila P, Asaikumar L, Vennila L. Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes. Biomed Pharmacother. 2017;85:582-91. [
DOI:10.1016/j.biopha.2016.11.067] [
PMID]
18. Arafa MH, Mohammad NS, Atteia HH, Abd-Elaziz HR. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J Physiol Biochem. 2014;70(3):701-11. [
DOI:10.1007/s13105-014-0339-y] [
PMID]
19. Hosseini Z, Mansouritorghabeh F, Kakhki FSH, Hosseini M, Rakhshandeh H, Hosseini A, et al. Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: involvement of oxidative stress and acetylcholinesterase. Metab Brain Dis. 2022;37(2):473-88. [
DOI:10.1007/s11011-021-00898-y] [
PMID]
20. Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand-Noughabi S, et al. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Med. 2023;14:1305816. [
DOI:10.3389/fphar.2023.1305816] [
PMID] [
PMCID]
21. Hosseini A, Rajabian A, Forouzanfar F, Farzadnia M, Boroushaki MT. Pomegranate seed oil protects against tacrolimus-induced toxicity in the heart and kidney by modulation of oxidative stress in rats. Avicenna J Phytomed. 2022;12(4):439.
22. Boroushaki MT, Fanoudi S, Mollazadeh H, Boroumand-Noughabi S, Hosseini A. Reno-protective effect of Rheum turkestanicum against gentamicin-induced nephrotoxicity. Iran J Basic Med Sci. 2019;22(3):328-33.
23. Hosseini A, Sahebkar A. Reversal of doxorubicin-induced cardiotoxicity by using phytotherapy: a review. J Pharmacopunct. 2017;20(4):243.
24. Koss-Mikołajczyk I, Todorovic V, Sobajic S, Mahajna J, Gerić M, Tur JA, et al. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int J Mol Sci. 2021;22(18):10037. [
DOI:10.3390/ijms221810037] [
PMID] [
PMCID]
25. Othman SNN, Lum PT, Gan SH, Mani S, Sekar M. Protective effect of natural products against chemotherapy-induced cardiotoxicity: a review. Pharmacogn J. 2020;12(5):1180-9. [
DOI:10.5530/pj.2020.12.166]
26. Goldenberg RCS, Silva Dos Santos D. Doxorubicin-Induced Cardiotoxicity: From Mechanisms to Development of Efficient Therapy. In: Tan W, editor. Cardiotoxicity. Rijeka: IntechOpen; 2018.
27. Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol. 2021;12:670479. [
DOI:10.3389/fphar.2021.670479] [
PMID] [
PMCID]
28. Hosseini A, Safari M-K, Rajabian A, Boroumand-Noughabi S, Eid AH, Al Dhaheri Y, et al. Cardioprotective Effect of Rheum turkestanicum Against Doxorubicin-Induced Toxicity in Rats. Front Pharmacol. 2022;13:909079. [
DOI:10.3389/fphar.2022.909079] [
PMID] [
PMCID]
29. Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708-18. [
DOI:10.1093/cvr/cvx183] [
PMID] [
PMCID]
30. Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal. 2023;21(1):61. [
DOI:10.1186/s12964-023-01077-5] [
PMID] [
PMCID]
31. Guo R, Hua Y, Ren J, Bornfeldt KE, Nair S. Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis. 2018;9(6):692. [
DOI:10.1038/s41419-018-0727-2] [
PMID] [
PMCID]
32. Meng YY, Yuan YP, Zhang X, Kong CY, Song P, Ma ZG, et al. Protection against doxorubicin-induced cytotoxicity by geniposide involves AMPKα signaling pathway. Oxid Med Cell Longev. 2019;2019(1):7901735. [
DOI:10.1155/2019/7901735] [
PMID] [
PMCID]
33. Benzer F, Kandemir FM, Ozkaraca M, Kucukler S, Caglayan C. Curcumin ameliorates doxorubicin‐induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats. J Biochem Mol Toxicol. 2018;32(2):e22030. [
DOI:10.1002/jbt.22030] [
PMID]
34. Zhang X, Hu C, Kong C-Y, Song P, Wu HM, Xu SC, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020;27(2):540-55. [
DOI:10.1038/s41418-019-0372-z] [
PMID] [
PMCID]
35. Cheng X, Liu D, Xing R, Song H, Tian X, Yan C, et al. Orosomucoid 1 Attenuates Doxorubicin‐Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Nrf2 Signaling. BioMed Res Inl. 2020;2020(1):5923572. [
DOI:10.1155/2020/5923572] [
PMID] [
PMCID]
36. Mirzavi F, Rajabian A, Boroumand‑Noughabi S, Hosseini A, Boroushaki MT, Hassanzadeh S. Standardized extract of Sanguisorba minor attenuates injury in aging rat model via the Nrf2/HO‑1 pathway. Acta Neurobiol Exp. 2022;82(4):433-41. [
DOI:10.55782/ane-2022-041] [
PMID]
37. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. [
DOI:10.3389/fchem.2023.1158198] [
PMID] [
PMCID]
38. Abdel-Daim MM, Kilany OE, Khalifa HA, Ahmed AA. Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol. 2017;80(4):745-53. [
DOI:10.1007/s00280-017-3413-7] [
PMID]
39. Zhai J, Tao L, Zhang S, Gao H, Zhang Y, Sun J, et al. Calycosin ameliorates doxorubicin‐induced cardiotoxicity by suppressing oxidative stress and inflammation via the sirtuin 1-NOD‐like receptor protein 3 pathway. Phytother Res. 2020;34(3):649-59. [
DOI:10.1002/ptr.6557] [
PMID]
40. Nakahara T, Tanimoto T, Petrov AD, Ishikawa K, Strauss HW, Narula J. Rat Model of Cardiotoxic Drug-Induced Cardiomyopathy. Methods Mol Biol. 2018;1816:221-32. [
DOI:10.1007/978-1-4939-8597-5_17] [
PMID]
41. Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol. 2017;174(21):3696-712. [
DOI:10.1111/bph.13791] [
PMID] [
PMCID]
42. Elhadidy MG, Elmasry A, Rabei MR, Eladel AE. Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. J Basic Clin Physiol Pharmacol. 2020;31(1):20180212. [
DOI:10.1515/jbcpp-2018-0212] [
PMID]
43. Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, et al. Chlorogenic acids in cardiovascular disease: A review of dietary consumption, pharmacology, and pharmacokinetics. J Agric Food Chem. 2020;68(24):6464-84. [
DOI:10.1021/acs.jafc.0c01554] [
PMID]
44. Warpe VS, Mali VR, Arulmozhi S, Bodhankar SL, Mahadik KR. Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. Journal of acute medicine. 2015;5(1):1-8. [
DOI:10.1016/j.jacme.2015.02.003]
45. Salinger-Martinovic S, Cosic V, Stojiljkovic N, Ilic S, Stojanovic N, Dencic T. Impact of ellagic acid application on doxorubicin-induced cardiovascular toxicity model. Can J Physiol Pharmacol. 2021;99(2):185-91. [
DOI:10.1139/cjpp-2020-0404] [
PMID]
46. Rahmani F, Asar N, Najafizadeh P, Mousavi SZ, Rastegar T. Cardioprotective effects of quercetin on doxorubicin induced cardiotoxicity in male rats. Med Sci J Islam Azad Univ Tehran Med Branch. 2018;28(1):24-30. [
DOI:10.29252/iau.28.1.24]
47. Hashish FE, ElBatsh MM, El-Odemi MH, Abdel-Wahed MM, El-Naidany SS. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J. 2021;34(1):333-9. [
DOI:10.4103/mmj.mmj_5_20]
48. Saleh Ahmed AS. Potential protective effect of catechin on doxorubicin-induced cardiotoxicity in adult male albino rats. Toxicol Mech Methods. 2022;32(2):97-105. [
DOI:10.1080/15376516.2021.1972375] [
PMID]
49. Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X, et al. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology. 2012;292(1):53-62. [
DOI:10.1016/j.tox.2011.11.018] [
PMID]
50. Nordgren KK, Wallace KB. Disruption of the Keap1/Nrf2-antioxidant response system after chronic doxorubicin exposure in vivo. Cardiovasc Toxicol. 2020;20(6):557-70. [
DOI:10.1007/s12012-020-09581-7] [
PMID]