دوره 33، شماره 161 - ( 9-1404 )                   جلد 33 شماره 161 صفحات 314-307 | برگشت به فهرست نسخه ها

Ethics code: This work is just a Simulation Study

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samadani A, Shamsaei M, Mousavi Zarandi A. Dose Modification factors (DMF) Evaluation in MammoSite Breast Brachytherapy Using Monte Carlo Simulation. J Adv Med Biomed Res 2025; 33 (161) :307-314
URL: http://journal.zums.ac.ir/article-1-7597-fa.html
Dose Modification factors (DMF) Evaluation in MammoSite Breast Brachytherapy Using Monte Carlo Simulation. Journal of Advances in Medical and Biomedical Research. 1404; 33 (161) :307-314

URL: http://journal.zums.ac.ir/article-1-7597-fa.html


چکیده:   (172 مشاهده)

Background & Objective: Partial Breast Irradiation (PBI) targets the tissue surrounding the tumor in breast cancer brachytherapy. Dose distribution can be affected by the type of radiation source, tumor depth, which alters backscatter, and by the concentration of contrast agents used for imaging. These factors may modify the dose delivered to the targeted area. Both 192Ir and 60Co sources are commonly used in PBI, and understanding how these factors interact is essential for accurate dose delivery and treatment optimization. Dose modification factors (DMFs) can be used to quantify these effects. The objective of this study is to evaluate the effect of tissue heterogeneity on the dose delivered to the 1-cm tumor margin and to calculate a dose modification factor relative to a homogeneous model.
 Materials & Methods: Monte Carlo simulations were performed using a 30 cm water-equivalent spherical phantom and a 4 cm diameter MammoSite balloon applicator. HDR 60Co and 192Ir sources were placed inside the balloon. DMF was defined as the ratio of the dose rate at 1 cm from the balloon surface under full-scatter conditions to the dose rate when a limited tissue thickness existed beyond the prescription point. Tissue thicknesses ranged from 0 to 10 cm, and contrast agent concentrations varied from 0% to 25%.
Results:  Dose reductions of approximately 5% for 192Ir and 1% for 60Co were observed when no tissue was present beyond the prescription depth. At 25% contrast concentration, 192Ir showed an additional 4% reduction, while the dose reduction for 60Co remained below 0.5% across all contrast levels.
Conclusion:  The study emphasizes the importance of accounting for backscatter loss and contrast-induced attenuation, particularly for 192Ir, to prevent underdosing. Applying DMF is essential for accurate treatment planning in surface-adjacent breast tumors undergoing MammoSite brachytherapy.

متن کامل [PDF 609 kb]   (13 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Clinical Medicine
دریافت: 1404/5/6 | پذیرش: 1404/8/12 | انتشار: 1404/9/21

فهرست منابع
1. Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B, et al. Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst. 2008;100(16):1179-83. [DOI:10.1093/jnci/djn233] [PMID] [PMCID]
2. Sharifian A, Pourhoseingholi MA, Emadedin M, Rostami Nejad M, Ashtari S, Hajizadeh N, et al. Burden of Breast Cancer in Iranian Women is Increasing. Asian Pac J Cancer Prev. 2015;16(12):5049-52. [DOI:10.7314/APJCP.2015.16.12.5049] [PMID]
3. Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseingholi A, Barzegar F, et al. Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev. 2012;13(1):367-70. [DOI:10.7314/APJCP.2012.13.1.367] [PMID]
4. RadiologyInfo.org. External Beam Therapy (EBT): Radiological Society of North America; American College of Radiology; 2025. Available from: [https://www.radiologyinfo.org/en/info/ebt]
5. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227-32. [DOI:10.1056/NEJMoa020989] [PMID] [PMCID]
6. Lee JH, Lee H, Bang YJ, Ryu JM, Lee SK, Yu J, et al. Comparison of Recurrence Rate Between Re-Excision With Radiotherapy and Radiotherapy-Only Groups in Surgical Margin Involvement of In Situ Carcinoma. J Breast Cancer. 2022;25(4):288-95. [DOI:10.4048/jbc.2022.25.e36] [PMID] [PMCID]
7. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347(16):1233-41. [DOI:10.1056/NEJMoa022152] [PMID]
8. Clark RM, Whelan T, Levine M, Roberts R, Willan A, McCulloch P, et al. Randomized clinical trial of breast irradiation following lumpectomy and axillary dissection for node-negative breast cancer: an update. Ontario Clinical Oncology Group. J Natl Cancer Inst. 1996;88(22):1659-64. [DOI:10.1093/jnci/88.22.1659] [PMID]
9. Holli K, Saaristo R, Isola J, Joensuu H, Hakama M. Lumpectomy with or without postoperative radiotherapy for breast cancer with favourable prognostic features: results of a randomized study. Br J Cancer. 2001;84(2):164-9. [DOI:10.1054/bjoc.2000.1571] [PMID] [PMCID]
10. Liljegren G, Holmberg L, Bergh J, Lindgren A, Tabár L, Nordgren H, et al. 10-Year results after sector resection with or without postoperative radiotherapy for stage I breast cancer: a randomized trial. J Clin Oncol. 1999;17(8):2326-33. [DOI:10.1200/JCO.1999.17.8.2326] [PMID]
11. Raju-Salicki S, Stowe HB, D'Souza A, Huang Y, Mahmood M, Kennedy WR, et al. Long-Term Outcomes of Multimodality Accelerated Partial Breast Irradiation for Ductal Carcinoma In Situ. Adv Radiat Oncol. 2025;10(7):101792. [DOI:10.1016/j.adro.2025.101792] [PMID] [PMCID]
12. Vicini FA, Cecchini RS, White JR, Julian TB, Arthur DW, Rabinovitch RA, et al. Primary results of NSABP B-39/RTOG 0413 (NRG Oncology): A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer. San Antonio Breast Cancer Symposium: San Antonio, TX, USA; 2019. [DOI:10.1158/1538-7445.SABCS18-GS4-04]
13. Cancer Research UK. Cancer Research UK London: Cancer Research UK; 2025. Available from: [https://www.cancerresearchuk.org/]
14. Edmundson GK, Vicini FA, Chen PY, Mitchell C, Martinez AA. Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator. Int J Radiat Oncol Biol Phys. 2002;52(4):1132-9. [DOI:10.1016/S0360-3016(01)02773-0] [PMID]
15. Benitez PR, Keisch ME, Vicini F, Stolier A, Scroggins T, Walker A, et al. Five-year results: the initial clinical trial of MammoSite balloon brachytherapy for partial breast irradiation in early-stage breast cancer. Am J Surg. 2007;194(4):456-62. [DOI:10.1016/j.amjsurg.2007.06.010] [PMID]
16. Kolářová I, Melichar B, Vaňásek J, Sirák I, Petera J, Horáčková K, et al. Special Techniques of Adjuvant Breast Carcinoma Radiotherapy. Cancers (Basel). 2022;15(1):298. [DOI:10.3390/cancers15010298] [PMID] [PMCID]
17. Kishi K. Brachytherapy. 2012. London, Englnad: IntechOpen. [DOI:10.5772/2026]
18. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633-74. [DOI:10.1118/1.1646040] [PMID]
19. Barrett A, Morris S, Dobbs J, Roques T. Practical radiotherapy planning: CRC Press; 2009. [DOI:10.1201/b13373]
20. Bensaleh S, Bezak E. The impact of uncertainties associated with MammoSite brachytherapy on the dose distribution in the breast. J Appl Clin Med. 2011;12(4):82-96. [DOI:10.1120/jacmp.v12i4.3464] [PMID] [PMCID]
21. Adhikari T, Montenegro T, Jung JW, Oare C, Fonseca G, Beaulieu L, et al. The use of Monte Carlo simulation techniques in brachytherapy: A comprehensive literature review. Brachytherapy. 2025;24(4):564-621. [DOI:10.1016/j.brachy.2025.02.006] [PMID]
22. Kassas B, Mourtada F, Horton JL, Lane RG, Buchholz TA, Strom EA. Dose modification factors for 192Ir high-dose-rate irradiation using Monte Carlo simulation. J Appl Clin Med Phys. 2006;7(3):28-34. [DOI:10.1120/jacmp.v7i3.2293] [PMID] [PMCID]
23. Buchholz TA. Partial breast irradiation--is it ready for prime time? Int J Radiat Oncol Biol Phys. 2003;57(5):1214-6. [DOI:10.1016/S0360-3016(03)00813-7] [PMID]
24. Ghorbani M, Mozaffari A, Akbari-Lalimi H. Presentation of a matrix-based method to calculate dose distribution in brachytherapy with photon-emitting sources. J Cancer Res Ther. 2019;15(6):1245-53. [DOI:10.4103/jcrt.JCRT_1274_16] [PMID]
25. BEBIG Medical GmbH. Cobalt-60 in HDR Brachytherapy Berlin: BEBIG Medical GmbH; 2025. Available from: [https://www.bebigmedical.com/product/34.html]
26. MedicineOnline. OMNIPAQUE™ (iohexol) Injection 240, 300, 350: MedicineOnline; 2025. Available from: [http://www.medicineonline.com/drugs/o/2754/OMNIPAQUE-iohexol-Injection-240-300-350.html]
27. Wikipedia contributors. Iohexol: Wikimedia Foundation; 2025. Available from: [https://en.wikipedia.org/wiki/Iohexol]
28. Kassas B, Mourtada F, Horton JL, Lane RG. Contrast effects on dosimetry of a partial breast irradiation system. Med Phys. 2004;31(7):1976-9. [DOI:10.1118/1.1763006] [PMID]
29. Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581-618. [DOI:10.1118/1.597316] [PMID]
30. Pearson D, Molina W, Carrizales Silva L, Figueroa R, Malano FM, Pérez PA, et al. Dose modification factor analysis of multilumen balloon brachytherapy applicator with Monte Carlo simulation. J Appl Clin Med Phys. 2014;15(3):54-62. [DOI:10.1120/jacmp.v15i3.4498] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb