دوره 33، شماره 159 - ( 6-1404 )                   جلد 33 شماره 159 صفحات 289-273 | برگشت به فهرست نسخه ها

Ethics code: IR.SBMU.RETECH.REC.1401.830

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farrokhi Yekta R, Amiri-Dashatan N, Arefi Oskouie A. Network Pharmacology and Molecular Docking to Explore Potential Drug Targets and Bioactive Compounds of Brucea javanica, Centipeda minima, and Lithospermum erythrorhizon in the Treatment of Triple Negative Breast Cancer. J Adv Med Biomed Res 2025; 33 (159) :273-289
URL: http://journal.zums.ac.ir/article-1-7621-fa.html
Network Pharmacology and Molecular Docking to Explore Potential Drug Targets and Bioactive Compounds of Brucea javanica, Centipeda minima, and Lithospermum erythrorhizon in the Treatment of Triple Negative Breast Cancer. Journal of Advances in Medical and Biomedical Research. 1404; 33 (159) :273-289

URL: http://journal.zums.ac.ir/article-1-7621-fa.html


چکیده:   (325 مشاهده)

Background and Aims: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. In this regard, Chinese herbal medicines, including Brucea javanica (BJ), Centipeda minima (CM), and Lithospermum erythrorhizon (LE) have exhibited anti-TNBC effects in both cell culture and mouse models, yet, a comprehensive understanding of their mechanisms of action remains elusive. Our study employed a network pharmacology approach and molecular docking to elucidate the potential pivotal pathways, drug targets, and most efficacious active constituents of these medications in the treatment of TNBC.
Methods: The active compounds and their corresponding target genes were obtained from the TCMSP database. The potential target genes associated with TNBC were also collected from DisGENet. The PPI network was established in the STRING database. The gene ontology and pathway enrichment analyses were conducted using the DAVID platform. AutoDock Vina was used for molecular docking.
Results: The AGE-RAGE signaling pathway in diabetic complications was identified as the top key signaling pathway. The therapeutic effects of CM, BJ, and LE involved a variety of biological processes, primarily the positive regulation of gene expression and cell proliferation, as well as the negative regulation of the apoptotic process. It has previously been observed that AGEs promote and increase the proliferation, invasion, and migration of breast cancer cell lines. The top target proteins included AKT1, TP53, CASP3, and VEGFA. The top active ingredients identified were stigmasterol, beta-sitosterol, nobiletin, and quercetin for CM, acetylshikonin for LE, and beta-sitosterol for BJ, as determined by the disease-drug-compound-target network analysis. The docking results showed good binding affinities ranging from -9 to -6 kcal/mol for all the docked complexes.
Conclusion: CM, BJ, and LE can treat TNBC through a multi-target and multi-pathway mechanism, regulating key cancer signaling pathways and the apoptotic process. This network pharmacology approach provided a new basis for subsequent experimental validation and further exploration of the role of these herbal drugs in treating TNBC.

     
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Medical Biology
دریافت: 1403/12/27 | پذیرش: 1404/6/10 | انتشار: 1404/7/7

فهرست منابع
1. Fahad Ullah M. Breast Cancer: Current Perspectives on the Disease Status. In: Ahmad A, editor. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress. Cham: International Publishing; 2019. pp. 51-64. [DOI:10.1007/978-3-030-20301-6_4] [PMID]
2. Lv X, He M, Zhao Y, Zhang L, Zhu W, Jiang L, et al. Identification of potential key genes and pathways predicting pathogenesis and prognosis for triple-negative breast cancer. Cancer Cell Int. 2019;19(1):172. [DOI:10.1186/s12935-019-0884-0] [PMID] [PMCID]
3. Wein L, Loi S. Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast. 2017;34:S27-S30. [DOI:10.1016/j.breast.2017.06.023] [PMID]
4. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res (BCR). 2020;22(1):61. [DOI:10.1186/s13058-020-01296-5] [PMID] [PMCID]
5. Dang H, Li H, Ma C, Wang Y, Tian J, Deng L, et al. Identification of Carpesium cernuum extract as a tumor migration inhibitor based on its biological response profiling in breast cancer cells. Phytomedicine. 2019;64:153072. [DOI:10.1016/j.phymed.2019.153072] [PMID]
6. Avtanski D, Poretsky L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol Med. 2018;24(1):29. [DOI:10.1186/s10020-018-0032-7] [PMID] [PMCID]
7. Chen X, Li S, Li D, Li M, Su Z, Lai X, et al. Ethanol extract of Brucea javanica seed inhibit triple-negative breast cancer by restraining autophagy via PI3K/Akt/mTOR pathway. Front Pharmacol. 2020;11:606. [DOI:10.3389/fphar.2020.00606] [PMID] [PMCID]
8. Luo C, Wang Y, Wei C, Chen Y, Ji Z. The anti‑migration and anti‑invasion effects of Bruceine D in human triple‑negative breast cancer MDA‑MB‑231 cells. Exp Ther Med. 2020;19(1):273-9. [DOI:10.3892/etm.2019.8187]
9. Gao C, Pan H, Ma F, Zhang Z, Zhao Z, Song J, et al. Centipeda minima active components and mechanisms in lung cancer. BMC Complement Med Ther. 2023;23(1):89. [DOI:10.1186/s12906-023-03915-y] [PMID] [PMCID]
10. Lee MM, Chan BD, Wong WY, Qu Z, Chan MS, Leung TW, et al. Anti-cancer Activity of Centipeda minima Extract in Triple Negative Breast Cancer via Inhibition of AKT, NF-κB, and STAT3 Signaling Pathways. Front oncol. 2020;10:491. [DOI:10.3389/fonc.2020.00491] [PMID] [PMCID]
11. Chiu S-C, Yang N-S. Inhibition of tumor necrosis factor-α through selective blockade of pre-mRNA splicing by shikonin. Mol Pharmacol. 2007;71(6):1640-5. [DOI:10.1124/mol.106.032821] [PMID]
12. Eketunde AO. Diabetes as a Risk Factor for Breast Cancer. Cureus. 2020;12(5):e8010. [DOI:10.7759/cureus.8010]
13. Shimomoto T, Luo Y, Ohmori H, Chihara Y, Fujii K, Sasahira T, et al. Advanced glycation end products (AGE) induce the receptor for AGE in the colonic mucosa of azoxymethane-injected Fischer 344 rats fed with a high-linoleic acid and high-glucose diet. J Gastroenterol. 2012;47(10):1073-83. [DOI:10.1007/s00535-012-0572-5] [PMID]
14. Radia A-M, Yaser A-M, Ma X, Zhang J, Yang C, Dong Q, et al. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci. 2013;14(4):7959-78. [DOI:10.3390/ijms14047959] [PMID] [PMCID]
15. Sharaf H, Matou-Nasri S, Wang Q, Rabhan Z, Al-Eidi H, Al Abdulrahman A, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta. 2015;1852(3):429-41. [DOI:10.1016/j.bbadis.2014.12.009] [PMID]
16. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46(6):372-83. [DOI:10.3109/07853890.2014.912836] [PMID]
17. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2020;45(1):162-74. [DOI:10.3892/ijmm.2019.4404]
18. Bae H, Song G, Lim W. Stigmasterol Causes Ovarian Cancer Cell Apoptosis by Inducing Endoplasmic Reticulum and Mitochondrial Dysfunction. Pharmaceutics. 2020;12(6):488. [DOI:10.3390/pharmaceutics12060488] [PMID] [PMCID]
19. AmeliMojarad M, AmeliMojarad M, Pourmahdian A. The inhibitory role of stigmasterol on tumor growth by inducing apoptosis in Balb/c mouse with spontaneous breast tumor (SMMT). BMC Pharmacol Toxicol. 2022;23(1):42. [DOI:10.1186/s40360-022-00578-2] [PMID] [PMCID]
20. Gautam M, Thapa RK, Gupta B, Soe ZC, Ou W, Poudel K, et al. Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy. Expert Opin Drug Deliv. 2020;17(3):423-34. [DOI:10.1080/17425247.2020.1727442] [PMID]
21. Le C-F, Kailaivasan TH, Chow S-C, Abdullah Z, Ling S-K, Fang C-M. Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells. Int Immunopharmacol. 2017;44:203-10. [DOI:10.1016/j.intimp.2017.01.013] [PMID]
22. Eli H, Rini H, Bayu I. Beta-sitosterol from sablo (Acalypha wilkesiana Muell. Arg.) leaves induce apoptosis in MCF-7 Breast cancer cell lines. J Adv Pharm Res. 2023;13(1):111-5. [DOI:10.51847/PqZQh9sICv]
23. Borah N, Gunawardana S, Torres H, McDonnell S, Van Slambrouck S. 5, 6, 7, 3', 4', 5'-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int J Oncol. 2017;51(6):1685-93. [DOI:10.3892/ijo.2017.4157] [PMID] [PMCID]
24. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, et al. Quercetin and Cancer Chemoprevention. Evid Based Complement Alternat Med. 2011;2011:591356. [DOI:10.1093/ecam/neq053] [PMID] [PMCID]
25. Ezzati M, Yousefi B, Velaei K, Safa A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020;248:117463. [DOI:10.1016/j.lfs.2020.117463] [PMID]
26. Tao SF, He HF, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem. 2015;402(1-2):93-100. [DOI:10.1007/s11010-014-2317-7] [PMID]
27. Kashyap A, Umar SM, Dev J․R․ A, Mendiratta M, Prasad CP. In vitro anticancer efficacy of a polyphenolic combination of Quercetin, Curcumin, and Berberine in triple negative breast cancer (TNBC) cells. Phytomedicine Plus. 2022;2(2):100265. [DOI:10.1016/j.phyplu.2022.100265]
28. Sharma R, Gatchie L, Williams IS, Jain SK, Vishwakarma RA, Chaudhuri B, et al. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Bioorg Med Chem Lett. 2017;27(24):5400-3. [DOI:10.1016/j.bmcl.2017.11.013] [PMID]
29. Wang Q, Wang J, Wang J, Ju X, Zhang H. Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment. Toxicol Res. 2021;10(6):1077-84. [DOI:10.1093/toxres/tfab107] [PMID] [PMCID]
30. Chen Y, Chen Z-y, Chen L, Zhang J-y, Fu L-y, Tao L, et al. Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling. Biochem Pharmacol. 2019;166:33-45. [DOI:10.1016/j.bcp.2019.05.001] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb