دوره 33، شماره 161 - ( 9-1404 )                   جلد 33 شماره 161 صفحات 336-327 | برگشت به فهرست نسخه ها

Ethics code: IR.KUMS.MED.REC.1403.145

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haji Ahmed S, Namiq Amin M, Ghanbari A, Pazhouhi M, Rashidi I. In Vitro Evaluating Anti-Asthmatic and Anti-Inflammatory Activities of Allium ampeloprasum Ethanolic Extract in Airway Smooth Muscle Cells and T Lymphocytes. J Adv Med Biomed Res 2025; 33 (161) :327-336
URL: http://journal.zums.ac.ir/article-1-7677-fa.html
In Vitro Evaluating Anti-Asthmatic and Anti-Inflammatory Activities of Allium ampeloprasum Ethanolic Extract in Airway Smooth Muscle Cells and T Lymphocytes. Journal of Advances in Medical and Biomedical Research. 1404; 33 (161) :327-336

URL: http://journal.zums.ac.ir/article-1-7677-fa.html


چکیده:   (258 مشاهده)

Background & Objective:  The incidence of asthma is rising, incurring considerable healthcare expenses. Although corticosteroids are the most effective anti-inflammatory drugs for improving lung function in asthma, they have a limited influence on airway remodeling and can cause adverse effects. Therefore, interest in developing natural medications with fewer side effects is growing. The increasing use of traditional herbal medicine demands more scientific evidence for its efficacy. Allium ampeloprasum, which is suggested for use in traditional medicine to treat asthma, was chosen for this investigation due to its traditional applications.
 Materials & Methods:  A hydroalcoholic extract of the plant was prepared. Its effect on the viability and proliferation of airway smooth muscle cells was determined using the MTT assay. The production of nitric oxide and the levels of inflammatory proteins in T lymphocyte cells were also investigated.
Results:  A. ampeloprasum extract significantly reduced the proliferation of airway smooth muscle cells in a dose- and time-dependent manner (p ≤ 0.05). Platelet-derived growth factor-BB (PDGF-BB) enhanced proliferation, whereas the extract significantly suppressed this PDGF-BB-induced proliferation (p ≤ 0.05). The extract did not influence basal cell viability or proliferation, regardless of LPS stimulation. In LPS-stimulated cells, the extract significantly decreased nitric oxide production (p ≤ 0.05). The expression and production of LPS-induced inflammatory markers were also significantly reduced (p ≤ 0.05).
Conclusion:  A. ampeloprasum has anti-inflammatory effects and can prevent the proliferation of airway smooth muscle cells. It can be proposed as a possible corticosteroid substitute.

متن کامل [PDF 501 kb]   (15 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Pharmacology
دریافت: 1404/2/4 | پذیرش: 1404/7/20 | انتشار: 1404/9/21

فهرست منابع
1. Braman SS. The global burden of asthma. Chest. 2006;130(1 Suppl):4s-12s. [DOI:10.1378/chest.130.1_suppl.4S] [PMID] [PMCID]
2. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017;3:1. [DOI:10.1186/s40733-016-0029-3] [PMID] [PMCID]
3. Nanda A, Russell AF, Bingemann TA. Pharmacology Update: Emergency and Controller Medications for Treatment of Asthma. NASN Sch Nurse. 2022;37(1):31-5. [DOI:10.1177/1942602X211036933] [PMID]
4. Heffler E, Madeira LNG, Ferrando M, Puggioni F, Racca F, Malvezzi L, et al. Inhaled Corticosteroids Safety and Adverse Effects in Patients with Asthma. J Allergy Clin Immunol Pract. 2018;6(3):776-81. [DOI:10.1016/j.jaip.2018.01.025] [PMID]
5. Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta. 2011;1810(11):1096-102. [DOI:10.1016/j.bbagen.2011.02.005] [PMID] [PMCID]
6. Umetsu R, Tanaka M, Nakayama Y, Kato Y, Ueda N, Nishibata Y, et al. Neuropsychiatric Adverse Events of Montelukast: An Analysis of Real-World Datasets and drug-gene Interaction Network. Front Pharmacol. 2021;12:764279. [DOI:10.3389/fphar.2021.764279] [PMID] [PMCID]
7. Busse WW. Biological treatments for severe asthma: A major advance in asthma care. Allergol Int. 2019;68(2):158-66. [DOI:10.1016/j.alit.2019.01.004] [PMID] [PMCID]
8. Alobaidi AH, Alsamarai AM, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem. 2021;20(4):317-32. [DOI:10.2174/1871523020666210920100707] [PMID]
9. Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of Platelet-Derived Growth Factor (PDGF) in Asthma as an Immunoregulatory Factor Mediating Airway Remodeling and Possible Pharmacological Target. Front Pharmacol. 2020;11:47. [DOI:10.3389/fphar.2020.00047] [PMID] [PMCID]
10. Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells. 2019;8(7):685. [DOI:10.3390/cells8070685] [PMID] [PMCID]
11. Vuković S, Popović-Djordjević JB, Kostić AŽ, Pantelić ND, Srećković N, Akram M, et al. Allium species in the Balkan region-major metabolites, antioxidant and antimicrobial properties. Horticulturae. 2023;9(3):408. [DOI:10.3390/horticulturae9030408]
12. Sedighi-Hafshejani M, Noori-Ahmadabadi M, Nasri H, Hadi M, Rafieian-Kopaei M. In-Vitro Evaluation of Hydroalcoholic Extract of Allium Ampeloprasum on Rat Ileum Contractions. J Isfahan Med Sch. 2014;31(268).
13. Horani A, Dickinson JD, Brody SL. Applications of mouse airway epithelial cell culture for asthma research. Mouse Models of Allergic Disease: Methods and Protocols. 2013. pp. 91-107. [DOI:10.1007/978-1-62703-496-8_7] [PMID]
14. Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018;2018(6). [DOI:10.1101/pdb.prot095505] [PMID]
15. Ghosh P, Mukherjee S, Ghosh S, Gangopadhyay A, Keswani T, Sengupta A, et al. Estimating nitric oxide (NO) from MDSCs by Griess method. Methods Cell Biol. 2024;184:149-58. [DOI:10.1016/bs.mcb.2023.07.004] [PMID]
16. Döbbeling U, Böni R, Häffner A, Dummer R, Burg G. Method for simultaneous RNA and DNA isolation from biopsy material, culture cells, plants and bacteria. Biotechniques. 1997;22(1):88-90. [DOI:10.2144/97221bm19] [PMID]
17. Green MR, Sambrook J. Amplification of cDNA Generated by Reverse Transcription of mRNA: Two-Step Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harb Protoc. 2019;2019(5). [DOI:10.1101/pdb.prot095190] [PMID]
18. Green MR, Sambrook J. Quantification of RNA by real-time reverse transcription-polymerase chain reaction (RT-PCR). Cold Spring Harbor Protocols. 2018;2018(10):pdb-prot095042. [DOI:10.1101/pdb.prot095042] [PMID]
19. Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):347-54. [DOI:10.1513/pats.200504-028SR] [PMID] [PMCID]
20. Tang ML, Wilson JW, Stewart AG, Royce SG. Airway remodelling in asthma: current understanding and implications for future therapies. Pharmacol Ther. 2006;112(2):474-88. [DOI:10.1016/j.pharmthera.2006.05.001] [PMID]
21. Nath P, Leung SY, Williams A, Noble A, Chakravarty SD, Luedtke GR, et al. Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. Eur J Pharmacol. 2006;544(1-3):160-7. [DOI:10.1016/j.ejphar.2006.06.031] [PMID]
22. Jeon WY, Shin IS, Shin HK, Lee MY. Samsoeum water extract attenuates allergic airway inflammation via modulation of Th1/Th2 cytokines and decrease of iNOS expression in asthmatic mice. BMC Complement Altern Med. 2015;15:47. [DOI:10.1186/s12906-015-0561-3] [PMID] [PMCID]
23. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2015;1(1):15025. [DOI:10.1038/nrdp.2015.25] [PMID] [PMCID]
24. Duong-Quy S. Clinical Utility Of The Exhaled Nitric Oxide (NO) Measurement With Portable Devices In The Management Of Allergic Airway Inflammation And Asthma. J Asthma Allergy. 2019;12:331-41. [DOI:10.2147/JAA.S190489] [PMID] [PMCID]
25. Kim SH. Risk of Pneumonia Associated With the Use of Inhaled Corticosteroids in Asthma. Allergy Asthma Immunol Res. 2019;11(6):760-2. [DOI:10.4168/aair.2019.11.6.760]
26. Taur DJ, Patil RY. Some medicinal plants with antiasthmatic potential: a current status. Asian Pac J Trop Biomed. 2011;1(5):413-8. [DOI:10.1016/S2221-1691(11)60091-9] [PMID] [PMCID]
27. Rahimi-Madiseh M, Heidarian E, Kheiri S, Rafieian-Kopaei M. Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed Pharmacother. 2017;86:363-7. [DOI:10.1016/j.biopha.2016.12.028] [PMID]
28. Choi JH, Kim SH, Lee EB, Kim JS, Jung JE, Jeong UY, et al. Anti-Diabetic Effects of Allium hookeri Extracts Prepared by Different Methods in Type 2 C57BL/J-db/db Mice. Pharmaceuticals (Basel). 2022;15(4):486. [DOI:10.3390/ph15040486] [PMID] [PMCID]
29. Taj Eldin IM, Ahmed EM, Elwahab HMA. Preliminary Study of the Clinical Hypoglycemic Effects of Allium cepa (Red Onion) in Type 1 and Type 2 Diabetic Patients. Environ Health Insights. 2010;4:71-7. [DOI:10.4314/sjms.v4i2.44910]
30. Gavanji S, Bakhtari A, Baghshahi H, Chamgordani ZH, Sadeghi A. Antibacterial Effect of Allium ampeloprasum and Allium porrum Extracts on Staphylococcus aureus and Pseudomonas aeruginosa. J Pharmacopuncture. 2023;26(1):53-9. [DOI:10.3831/KPI.2023.26.1.53] [PMID] [PMCID]
31. Abbas MA. Analgesic effect of Allium ampeloprasum: Evidence for the involvement of beta-adrenergic system. J Funct Foods. 2019;57:1-6. [DOI:10.1016/j.jff.2019.03.046]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb