دوره 33، شماره 161 - ( 9-1404 )                   جلد 33 شماره 161 صفحات 346-337 | برگشت به فهرست نسخه ها

Ethics code: IR.KAUMS.AEC.1402.010

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Alani B, Seyed Hosseini E, Haerifar F. Suvorexant Attenuates Morphine Tolerance in Mice Through Modulation of DRD2 Gene Expression in The Brain. J Adv Med Biomed Res 2025; 33 (161) :337-346
URL: http://journal.zums.ac.ir/article-1-7722-fa.html
Suvorexant Attenuates Morphine Tolerance in Mice Through Modulation of DRD2 Gene Expression in The Brain. Journal of Advances in Medical and Biomedical Research. 1404; 33 (161) :337-346

URL: http://journal.zums.ac.ir/article-1-7722-fa.html


چکیده:   (227 مشاهده)

Background & Objective: The emergence of tolerance to morphine presents an obstacle to its therapeutic use. Suvorexant (SUV) has demonstrated efficacy in mitigating the addictive properties of drugs. Nevertheless, the exact pathways through which SUV exerts its influence remain poorly elucidated. This study investigated whether SUV influences the development of morphine tolerance and examined its impact on DRD2 and NR1 gene expression in the mouse brain.
 Materials & Methods: The study involved 28 male mice, which were randomly allocated into four groups. Morphine tolerance was induced through repeated morphine injections. Clonidine (0.1 mg/kg), SUV (90 mg/kg), and normal saline were administered (ip) 30 minutes before morphine injection. Tail-flick and open field tests were performed on day 4. Quantitative assessment of DRD2 and NR1 gene expression was performed using RT-PCR.
Results:  Repeated morphine injections led to a notable decrease (P < 0.001) in reaction time. Both SUV (P<0.05) and clonidine (P<0.001) indicated a significant reduction in the progression of morphine tolerance. SUV significantly reduced the elevated relative expression of the DRD2 gene (fold change = 1.628 ± 0.8659, P < 0.05) but did not alter the expression of the NR1 gene (P > 0.05).
Conclusion:  This finding indicated that SUV reduced tolerance to morphine. SUV administration decreased the relative expression of the DRD2 gene but did not affect NR1 gene expression. To our knowledge, these findings provide the first evidence that SUV attenuates morphine tolerance predominantly by modulating the dopaminergic system.

متن کامل [PDF 530 kb]   (13 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Pharmacology
دریافت: 1404/5/5 | پذیرش: 1404/7/14 | انتشار: 1404/9/21

فهرست منابع
1. Overstreet DH, Brown R, Lawrence AJ, Rezvani AH. Overview of Animal Models of. Biological Research on Addiction: Comprehensive Addictive Behaviors and Disorders, Volume 2. 2013;2:149. [DOI:10.1016/B978-0-12-398335-0.00016-9]
2. Theisen K, Jacobs B, Macleod L, Davies B. The United States opioid epidemic: a review of the surgeon's contribution to it and health policy initiatives. BJU Int. 2018;122(5):754-9. [DOI:10.1111/bju.14446] [PMID]
3. Nutt DJ, King LA, Phillips LD. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558-65. [DOI:10.1016/S0140-6736(10)61462-6] [PMID]
4. Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Sadeghi A, Nejat F, Mehramiz A. The Role of Orexin Receptor Antagonists in Inhibiting Drug Addiction: A Review Article. Addict Health. 2024;16(2):130-9. [DOI:10.34172/ahj.2024.1491] [PMID] [PMCID]
5. Zhou Y, Leri F. Neuroscience of opiates for addiction medicine: From stress-responsive systems to behavior In: Ekhtiari H, Paulus MBTP in BR. Neuroscience for Addiction Medicine: From Prevention to Rehabilitation - Constructs and Drugs; 2016. pp. 237-51. [DOI:10.1016/bs.pbr.2015.09.001] [PMID]
6. Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol. 2000;393(1-3):295-314. [DOI:10.1016/S0014-2999(00)00122-9] [PMID]
7. Listos J, Baranowska-Bosiacka I, Wąsik A, Talarek S, Tarnowski M, Listos P, et al. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system. Psychopharmacology (Berl). 2016;233(12):2383-97. [DOI:10.1007/s00213-016-4289-7] [PMID] [PMCID]
8. Briand LA, Flagel SB, Garcia-Fuster MJ, Watson SJ, Akil H, Sarter M, et al. Persistent Alterations in Cognitive Function and Prefrontal Dopamine D2 Receptors Following Extended, but Not Limited, Access to Self-Administered Cocaine. Neuropsychopharmacology. 2008;33(12):2969-80. [DOI:10.1038/npp.2008.18] [PMID] [PMCID]
9. Anderson SM, Pierce RC. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther. 2005;106(3):389-403. [DOI:10.1016/j.pharmthera.2004.12.004] [PMID]
10. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006;52(5):897-909. [DOI:10.1016/j.neuron.2006.10.011] [PMID]
11. Andrianarivelo A, Saint-Jour E, Pousinha P, Fernandez SP, Petitbon A, De Smedt-Peyrusse V, et al. Disrupting D1-NMDA or D2-NMDA receptor heteromerization prevents cocaine's rewarding effects but preserves natural reward processing. Sci Adv. 2021;7(43):eabg5970. [DOI:10.1126/sciadv.abg5970] [PMID] [PMCID]
12. Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci. 2021;15:806618. [DOI:10.3389/fncel.2021.806618] [PMID] [PMCID]
13. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci. 2019;20(17):4302. [DOI:10.3390/ijms20174302] [PMID] [PMCID]
14. Baldo BA, Daniel RA, Berridge CW, Kelley AE. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol. 2003;464(2):220-37. [DOI:10.1002/cne.10783] [PMID]
15. Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res. 2012;198:79-121. [DOI:10.1016/B978-0-444-59489-1.00007-0] [PMID] [PMCID]
16. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556-9. [DOI:10.1038/nature04071] [PMID]
17. Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G. Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res. 2007;183(1):43-51. [DOI:10.1016/j.bbr.2007.05.025] [PMID] [PMCID]
18. Baimel C, Borgland SL. Hypocretin modulation of drug-induced synaptic plasticity. Prog Brain Res. 2012;198:123-31. [DOI:10.1016/B978-0-444-59489-1.00008-2] [PMID]
19. Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S. Effect of suvorexant on morphine tolerance and dependence in mice: Role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology. 2021;84:64-72. [DOI:10.1016/j.neuro.2021.02.005] [PMID]
20. Dubey AK, Handu SS, Mediratta PK. Suvorexant: The first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother. 2015;6(2):118-21. [DOI:10.4103/0976-500X.155496] [PMID] [PMCID]
21. Calipari ES, España RA. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front Behav Neurosci. 2012;6:54. [DOI:10.3389/fnbeh.2012.00054] [PMID] [PMCID]
22. Hosseinzadeh H, Imenshahidi M, Hosseini M, Razavi BM. Effect of linalool on morphine tolerance and dependence in mice. Phytother Res. 2012;26(9):1399-404. [DOI:10.1002/ptr.3736] [PMID]
23. Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P. Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery?. Curr Drug Abuse Rev. 2008;1(2):222-38. [DOI:10.2174/1874473710801020222] [PMID]
24. Bailey CP, Connor M. Opioids: cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol. 2005;5(1):60-8. [DOI:10.1016/j.coph.2004.08.012] [PMID]
25. Timár J, Gyarmati Z, Fürst Z. The development of tolerance to locomotor effects of morphine and the effect of various opioid receptor antagonists in rats chronically treated with morphine. Brain Res Bull. 2005;64(5):417-24. [DOI:10.1016/j.brainresbull.2004.09.005] [PMID]
26. Vanderschuren LJ, De Vries TJ, Wardeh G, Hogenboom FA, Schoffelmeer AN. A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur J Neurosci. 2001;14(9):1533-8. [DOI:10.1046/j.0953-816x.2001.01775.x] [PMID]
27. Babbini M, Davis WM. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol. 1972;46(2):213-24. [DOI:10.1111/j.1476-5381.1972.tb06866.x] [PMID] [PMCID]
28. Acquas E, Di Chiara G. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J Neurochem. 1992;58(5):1620-5. [DOI:10.1111/j.1471-4159.1992.tb10033.x] [PMID]
29. Brady LS, Holtzman SG. Locomotor activity in morphine-dependent and post-dependent rats. Pharmacol Biochem Behav. 1981;14(3):361-70. [DOI:10.1016/0091-3057(81)90403-2] [PMID]
30. Zhang TJ, Qiu Y, Hua Z. The Emerging Perspective of Morphine Tolerance: MicroRNAs. Pain Res Manag. 2019;2019:9432965. [DOI:10.1155/2019/9432965] [PMID] [PMCID]
31. Drdla R, Gassner M, Gingl E, Sandkühler J. Induction of synaptic long-term potentiation after opioid withdrawal. Science. 2009;325(5937):207-10. [DOI:10.1126/science.1171759] [PMID]
32. Matsushita Y, Omotuyi IO, Mukae T, Ueda H. Microglia activation precedes the anti-opioid BDNF and NMDA receptor mechanisms underlying morphine analgesic tolerance. Curr Pharm Des. 2013;19(42):7355-61. [DOI:10.2174/138161281942140105161733] [PMID]
33. Mendez IA, Trujillo KA. NMDA receptor antagonists inhibit opiate antinociceptive tolerance and locomotor sensitization in rats. Psychopharmacology (Berl). 2008;196(3):497-509. [DOI:10.1007/s00213-007-0984-8] [PMID]
34. Adam F, Dufour E, Le Bars D. The glycine site-specific NMDA antagonist (+)-HA966 enhances the effect of morphine and reverses morphine tolerance via a spinal mechanism. Neuropharmacology. 2008;54(3):588-96. [DOI:10.1016/j.neuropharm.2007.11.013] [PMID]
35. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science. 1991;251(4989):85-7. [DOI:10.1126/science.1824728] [PMID]
36. Glass MJ. The role of functional postsynaptic NMDA receptors in the central nucleus of the amygdala in opioid dependence. Vitam Horm. 2010;82:145-66. [DOI:10.1016/S0083-6729(10)82008-4] [PMID] [PMCID]
37. Ahmadi S, Rafieenia F, Rostamzadeh J. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex. Basic Clin Neurosci. 2016;7(3):241-8. [DOI:10.15412/J.BCN.03070309] [PMID] [PMCID]
38. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. Aaps j. 2008;10(4):537-51. [DOI:10.1208/s12248-008-9056-1] [PMID] [PMCID]
39. Shen CH, Tsai RY, Wong CS. Role of neuroinflammation in morphine tolerance: effect of tumor necrosis factor-α. Acta Anaesthesiol Taiwan. 2012;50(4):178-82. [DOI:10.1016/j.aat.2012.12.004] [PMID]
40. Kaplan GB, Thompson BL. Neuroplasticity of the extended amygdala in opioid withdrawal and prolonged opioid abstinence. Front Pharmacol. 2023;14:1253736. [DOI:10.3389/fphar.2023.1253736] [PMID] [PMCID]
41. Rodríguez-Muñoz M, Sánchez-Blázquez P, Vicente-Sánchez A, Berrocoso E, Garzón J. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012;37(2):338-49. [DOI:10.1038/npp.2011.155] [PMID] [PMCID]
42. Dai WL, Xiong F, Yan B, Cao ZY, Liu WT, Liu JH, et al. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord. Sci Rep. 2016;6:38746. [DOI:10.1038/srep38746] [PMID] [PMCID]
43. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217. [DOI:10.1124/pr.110.002642] [PMID] [PMCID]
44. Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother. 2008;8(5):781-97. [DOI:10.1586/14737175.8.5.781] [PMID]
45. Ozdemir E, Bagcivan I, Gursoy S. Role of D₁/D₂ dopamin receptors antagonist perphenazine in morphine analgesia and tolerance in rats. Bosn J Basic Med Sci. 2013;13(2):119-25. [DOI:10.17305/bjbms.2013.2394] [PMID] [PMCID]
46. Zarrindast MR, Dinkoub Z, Homayoun H, Bakhtiarian A, Khavandgar S. Dopamine receptor mechanism(s) and morphine tolerance in mice. J Psychopharmacol. 2002;16(3):261-6. [DOI:10.1177/026988110201600312] [PMID]
47. Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res. 2020;1731:146028. [DOI:10.1016/j.brainres.2018.11.023] [PMID]
48. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23(8):3106-11. [DOI:10.1523/JNEUROSCI.23-08-03106.2003] [PMID] [PMCID]
49. Vittoz NM, Berridge CW. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology. 2006;31(2):384-95. [DOI:10.1038/sj.npp.1300807] [PMID]
50. Ahmadi-Soleimani SM, Azizi H, Gompf HS, Semnanian S. Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: A site specific focus. Neuropharmacology. 2017;126:25-37. [DOI:10.1016/j.neuropharm.2017.08.024] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb