دوره 33، شماره 161 - ( 9-1404 )                   جلد 33 شماره 161 صفحات 306-293 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jha A K, Almoyad M A A, Wahab S, Gupta G, Goh K W, Sahebkar A et al . Computational Identification of Dysregulated Genes and Pathways in Non-Small Cell Lung Cancer: A Systems Biology Approach. J Adv Med Biomed Res 2025; 33 (161) :293-306
URL: http://journal.zums.ac.ir/article-1-7825-fa.html
Computational Identification of Dysregulated Genes and Pathways in Non-Small Cell Lung Cancer: A Systems Biology Approach. Journal of Advances in Medical and Biomedical Research. 1404; 33 (161) :293-306

URL: http://journal.zums.ac.ir/article-1-7825-fa.html


چکیده:   (232 مشاهده)

Background & Objective:  Non-small cell lung cancer (NSCLC) stands as the predominant subtype of lung malignancy globally, which persists as a major driver of cancer-related deaths. This study systematically investigates bioinformatics-based investigations aimed at identifying differentially expressed genes (DEGs) and potential therapeutic targets associated with NSCLC.
 Materials & Methods:  Publicly available RNA expression datasets were analyzed using advanced in silico tools, including the enrichr function from the GSEApy package and R statistical software (v4.3.1), to uncover molecular pathways involved in disease progression. Key oncogenic signaling pathways such as TGF-β signaling, Wnt/β-catenin, PI3K-AKT-mTOR, and MAPK were found to be significantly associated with several genes, such as AGER, ANK3, CSTA, FGG, AGR2, BRCA1, HDAC1, miR-577, TRIM29, PIK3CA, and JNK. Pathway enrichment analysis further identified significant involvement in chronic myeloid leukemia, longevity regulation, thyroid hormone signaling, viral carcinogenesis, Epstein-Barr virus infection, and microRNAs in cancer.
Results:  The correlation analysis revealed that TRIM29 expression was higher in control samples, whereas AGR2 was prominently expressed in NSCLC samples. Additionally, HDAC1 and BRCA1 were identified as promising diagnostic biomarkers.
Conclusion:  These findings improve our comprehension of NSCLC disease mechanisms while identifying promising molecular candidates for formulating more potent, customized treatment approaches, potentially improving clinical outcomes for patients.

متن کامل [PDF 1059 kb]   (21 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Life Science
دریافت: 1404/5/25 | پذیرش: 1404/8/20 | انتشار: 1404/9/21

فهرست منابع
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. [DOI:10.3322/caac.21834] [PMID] [PMCID]
2. World Health Organization. Cancer fact sheet: World Health Organization; 2025. Available from: [https://www.who.int/news-room/fact-sheets/detail/cancer]
3. Centers for Disease Control and Prevention. U.S. Cancer Statistics: Lung cancer statistics: U.S. Department of Health and Human Services; 2025. Available from: [https://www.cdc.gov/lung-cancer/statistics/?CDC_AAref_Val=https://www.cdc.gov/cancer/lung/statistics]
4. Ess SM, Herrmann C, Frick H, Krapf M, Cerny T, Jochum W, et al. Epidermal growth factor receptor and anaplastic lymphoma kinase testing and mutation prevalence in patients with advanced non-small cell lung cancer in Switzerland: A comprehensive evaluation of real world practices. Eur J Cancer Care (Engl). 2017;26(6). [DOI:10.1111/ecc.12721] [PMID]
5. Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells. 2023;12(7):990. [DOI:10.3390/cells12070990] [PMID] [PMCID]
6. Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. [DOI:10.1038/s41392-022-01007-w] [PMID] [PMCID]
7. Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 2013;56(10):876-85. [DOI:10.1007/s11427-013-4553-6] [PMID]
8. Zhang Y. LncRNA-encoded peptides in cancer. J Hematol Oncol. 2024;17(1):66. [DOI:10.1186/s13045-024-01591-0] [PMID] [PMCID]
9. Ma L, Huang Y, Zhu W, Zhou S, Zhou J, Zeng F, et al. An integrated analysis of miRNA and mRNA expressions in non-small cell lung cancers. PLoS One. 2011;6(10):e26502. [DOI:10.1371/journal.pone.0026502] [PMID] [PMCID]
10. Shriwash N, Singh P, Arora S, Ali SM, Ali S, Dohare R. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon. 2019;5(6):e01707. [DOI:10.1016/j.heliyon.2019.e01707] [PMID] [PMCID]
11. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12(1):8. [DOI:10.1186/s13073-019-0703-1] [PMID] [PMCID]
12. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58. [DOI:10.1186/s12943-018-0782-4] [PMID] [PMCID]
13. Giménez N, Martínez-Trillos A, Montraveta A, Lopez-Guerra M, Rosich L, Nadeu F, et al. Mutations in the RAS-BRAF-MAPK-ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia. Haematologica. 2019;104(3):576-86. [DOI:10.3324/haematol.2018.196931] [PMID] [PMCID]
14. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6(1):425. [DOI:10.1038/s41392-021-00828-5] [PMID] [PMCID]
15. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563-75. [DOI:10.1038/nrc2676] [PMID] [PMCID]
16. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:583929. [DOI:10.1155/2011/583929] [PMID] [PMCID]
17. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303-11. [DOI:10.1111/j.1399-0004.2011.01809.x] [PMID] [PMCID]
18. Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, et al. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front Pharmacol. 2022;13:791272. [DOI:10.3389/fphar.2022.791272] [PMID] [PMCID]
19. Billin AN, Thirlwell H, Ayer DE. β-Catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol. 2000;20(18):6882-90. [DOI:10.1128/MCB.20.18.6882-6890.2000] [PMID] [PMCID]
20. Wang L, Shen S, Wang M, Ding F, Xiao H, Li G, et al. Rho GTPase Activating Protein 24 (ARHGAP24) Silencing Promotes Lung Cancer Cell Migration and Invasion by Activating β-Catenin Signaling. Med Sci Monit. 2019;25:21-31. [DOI:10.12659/MSM.911503] [PMID] [PMCID]
21. Hu Y, He J, He L, Xu B, Wang Q. Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl). 2021;99(9):1209-20. [DOI:10.1007/s00109-021-02083-1] [PMID] [PMCID]
22. Chen J, Ye C, Wan C, Li G, Peng L, Peng Y, et al. The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci. 2021;22(17):9640. [DOI:10.3390/ijms22179640] [PMID] [PMCID]
23. Liu J, Wang T, Creighton CJ, Wu S-P, Ray M, Janardhan KS, et al. JNK1/2 represses Lkb1-deficiency-induced lung squamous cell carcinoma progression. Nature Communications. 2019;10(1):2148. [DOI:10.1038/s41467-019-09843-1] [PMID] [PMCID]
24. Geng QS, Liu RJ, Shen ZB, Wei Q, Zheng YY, Jia LQ, et al. Transcriptome sequencing and metabolome analysis reveal the mechanism of Shuanghua Baihe Tablet in the treatment of oral mucositis. Chin J Nat Med. 2021;19(12):930-43. [DOI:10.1016/S1875-5364(22)60150-X] [PMID]
25. Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res. 2007;13(10):2890-6. [DOI:10.1158/1078-0432.CCR-06-3043] [PMID]
26. Li Q, Lin L, Tong Y, Liu Y, Mou J, Wang X, et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discovery. 2018;4(1):13. [DOI:10.1038/s41421-018-0010-9]
27. Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics. Pharm Nanotechnol. 2017;5(3):203-14. [DOI:10.2174/2211738505666170515113936] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb