1. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8(6):595-608. [
DOI:10.15252/emmm.201606210]
2. De Strooper B, Karran E. The cellular phase of Alzheimer's disease. Cell. 2016;164(4):603-15. [
DOI:10.1016/j.cell.2015.12.056]
3. Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM. Protein aggregation in the brain: The molecular basis for Alzheimer's and Parkinson's diseases. Molec Med. 2008;14(7):451-64. [
DOI:10.2119/2007-00100.Irvine]
4. Sun X, Chen WD, Wang YD. Beta-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Front Pharmacol. 2015;6:221. [
DOI:10.3389/fphar.2015.00221]
5. Huang X, Atwood CS, Hartshorn MA, et al. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochem. 1999;38(24):7609-16. [
DOI:10.1021/bi990438f]
6. Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell and Molec Life Sci. 2007;64(17):2202-10. [
DOI:10.1007/s00018-007-7218-4]
7. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450-64. [
DOI:10.1016/j.redox.2017.10.014]
8. Ferreira ME, de Vasconcelos AS, da Costa Vilhena T, et al. Oxidative stress in Alzheimer's disease: Should we keep trying antioxidant therapies? Cell Molec Neurobiol. 2015;35(5):595-614. [
DOI:10.1007/s10571-015-0157-y]
9. Li FJ, Shen L, Ji HF. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer's disease: a meta-analysis. J Alzheimer's Dis. 2012;31(2):253-8. [
DOI:10.3233/JAD-2012-120349]
10. Gustafson DR, Clare Morris M, Scarmeas N, et al. New perspectives on Alzheimer's disease and nutrition. J Alzheimer's Dis. 2015;46(4):1111-27. [
DOI:10.3233/JAD-150084]
11. Amato A, Terzo S, Mule F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer's disease. Antioxidants. 2019;8(12). [
DOI:10.3390/antiox8120608]
12. Deardorff WJ, Feen E, Grossberg GT. The use of cholinesterase inhibitors across all stages of Alzheimer's disease. Drugs & Aging. 2015;32(7):537-47. [
DOI:10.1007/s40266-015-0273-x]
13. Batool A, Kamal MA, Rizvi SMD, Rashid S. Topical discoveries on multi-target approach to manage Alzheimer's disease. Curr Drug Metab. 2018;19(8):704-13. [
DOI:10.2174/1389200219666180305152553]
14. Ambure P, Bhat J, Puzyn T, Roy K. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach. J Biomolec Struct & Dynamics. 2019;37(5):1282-306. [
DOI:10.1080/07391102.2018.1456975]
15. Schulz V, Hänsel R, Blumenthal M, Tyler VE. Rational phytotherapy: A reference guide for physicians and pharmacists: Springer Science & Business Media; 2004. [
DOI:10.1007/978-3-662-09666-6]
16. Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol. 2009;175(6):2557-65. [
DOI:10.2353/ajpath.2009.090417]
17. Golkar A, Nasirpour A, Keramat J. β-lactoglobulin-Angum gum (Amygdalus Scoparia Spach) complexes: Preparation and emulsion stabilization. J Disper Sci Technol. 2015;36(5):685-94. [
DOI:10.1080/01932691.2014.919587]
18. Hashemnia M, Nikousefat Z, Yazdani-Rostam M. Antidiabetic effect of Pistacia atlantica and Amygdalus scoparia in streptozotocin-induced diabetic mice. Compar Clin Pathol. 2015;24(6):1301-6. [
DOI:10.1007/s00580-015-2068-1]
19. Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J Ethnopharmacol. 2012;141(1):80-95. [
DOI:10.1016/j.jep.2012.02.004]
20. Hajimehdipoor H, Ara L, Moazzeni H, Esmaeili S. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran. Res J Pharmacog. 2016;3(4):1-7.
21. Soodi M, Hajimehdipoor H, Ataei N, Akbari S. Study of theprotective effects of seven Iranian medicinal plant extracts against Beta-Amyloid induced cytotoxicity in PC12 Cells. Pathobiol Res. 2016;19(3):45-58.
22. Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum. 2002;1(1):41-55. [
DOI:10.1080/147342202753203087]
23. Wei H, Leeds PR, Qian Y, Wei W, Chen R-w, Chuang D-M. β-Amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. Europ J Pharmacol. 2000;392(3):117-23. [
DOI:10.1016/S0014-2999(00)00127-8]
24. Soodi M, Dashti A, Hajimehdipoor H, Akbari S, Ataei N. Melissa officinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxidative stress. Cell J. 2017;18(4):556.
25. Sylvester PW. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Drug design and discovery: Springer; 2011. p. 157-68. [
DOI:10.1007/978-1-61779-012-6_9]
26. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med. 1999;27(5-6):612-6. [
DOI:10.1016/S0891-5849(99)00107-0]
27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic Biochem. 1976;72(1-2):248-54. [
DOI:10.1016/0003-2697(76)90527-3]
28. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88-95. [
DOI:10.1016/0006-2952(61)90145-9]
29. Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol. 2019;14(1):FNL9. [
DOI:10.2217/fnl-2018-0028]
30. Camilleri A, Zarb C, Caruana M, et al. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochimica et biophysica acta. 2013;1828(11):2532-43. [
DOI:10.1016/j.bbamem.2013.06.026]
31. Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in neuroprotection by phytochemicals: Bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Molec Sci. 2019;20(10):2451. [
DOI:10.3390/ijms20102451]
32. Arancibia S, Silhol M, Moulière F, et al. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis. 2008;31(3):316-26. [
DOI:10.1016/j.nbd.2008.05.012]
33. Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014;9(3):400. [
DOI:10.1007/s12263-014-0400-z]
34. Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer's disease therapy. Current Neuropharmacol. 2013;11(4):388-413. [
DOI:10.2174/1570159X11311040004]
35. Roseiro LB, Rauter AP, Serralheiro MLM. Polyphenols as acetylcholinesterase inhibitors: structural specificity and impact on human disease. Nutrition and Aging. 2012;1(2):99-111. [
DOI:10.3233/NUA-2012-0006]
36. dos Santos TC, Gomes TM, Pinto BAS, Camara AL, de Andrade Paes AM. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Front Pharmacol. 2018;9. [
DOI:10.3389/fphar.2018.01192]
37. Moran M, Mufson E, Gomez-Ramos P. Colocalization of cholinesterases with β amyloid protein in aged and Alzheimer's brains. Acta Neuropathologica. 1993;85(4):362-9. [
DOI:10.1007/BF00334445]
38. Inestrosa NC, Alvarez A, Perez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881-91. [
DOI:10.1016/S0896-6273(00)80108-7]
39. Alvarez A, Alarcón R, Opazo C, et al. Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci. 1998;18(9):3213-23. [
DOI:10.1523/JNEUROSCI.18-09-03213.1998]
40. Soodi M, Saeidnia S, Sharifzadeh M, et al. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease. Metab Brain Dis. 2016;31(2):395-404. [
DOI:10.1007/s11011-015-9773-y]
41. Sberna G, Sáez‐Valero J, Beyreuther K, Masters CL, Small DH. The amyloid β‐protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem. 1997;69(3):1177-84. [
DOI:10.1046/j.1471-4159.1997.69031177.x]
42. Härtl R, Gleinich A, Zimmermann M. Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. J Neurochem. 2011;116(6):1088-96. [
DOI:10.1111/j.1471-4159.2010.07164.x]
43. Sepand MR, Soodi M, Hajimehdipoor H, Soleimani M, Sahraei E. Comparison of neuroprotective effects of Melissa officinalis total extract and its acidic and non-acidic fractions against A beta-Induced toxicity. Iran J Pharmaceut Res. 2013;12(2):415-23.