دوره ۱۹، شماره ۷۶ - ( ۳-۱۳۹۰ )                   جلد ۱۹ شماره ۷۶ صفحات ۱۰۶-۹۴ | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bigdeli M R, Rahnema M. The Effect of Temporary Middle Cerebral Artery Occlusion on Reduction of Brain Injuries in Rat Stroke Model. J Adv Med Biomed Res 2011; 19 (76) :94-106
URL: http://journal.zums.ac.ir/article-1-1575-fa.html
بیگدلی محمد رضا، رهنما مهدی. بررسی اثر انسداد گذرای شریان مرکزی در کاهش آسیب‌های مغزی در مدل سکته‌ی مغزی رت. Journal of Advances in Medical and Biomedical Research. ۱۳۹۰; ۱۹ (۷۶) :۹۴-۱۰۶

URL: http://journal.zums.ac.ir/article-۱-۱۵۷۵-fa.html


۱- دکترای تخصصی فیزیولوژی، استادیار دانشگاه آزاد اسلامی، واحد زنجان ، bigdelimohammadreza@yahoo.com
۲- دکترای تخصصی فیزیولوژی، استادیار دانشگاه آزاد اسلامی، واحد زنجان
چکیده:   (۱۶۷۴۷۷ مشاهده)

Background and Objective: Recent studies suggest that sub-lethal ischemia protect the brain from subsequent ischemic injuries. This study was an effort to identify and shed light on the nature of changes in the blood brain barrier permeability and brain edema.
Materials and Methods: Rats were divided into four main experimental groups, each of 28 animals. The first group acted as a model of ischemic preconditioning which was subjected to 10 minutes of temporary middle cerebral artery occlusion in the first day (tMCAO) and in the second day, was subjected to 60 min middle cerebral artery occlusion (MCAO). The second group acted as a control group and did not receive any surgery except 60 min middle cerebral artery occlusion in the second day. The third group served as a sham group, and was subjected to surgery with 10 min of temporary middle cerebral artery occlusion (tMCAO) in the first day. The fourth group remained intact and was not subjected to any surgery. Each main group subdivided into three subgroups (n=7) for infarct volume, blood brain barrier permeability, and brain edema. After 24 hours, each main group was subjected to 60min of right MCAO occlusion. Then, neurologic deficit score (NDS), infarct volume, blood brain barrier permeability, and brain edema were assessed in the subgroups.
Results: Preconditioning with tMCAO decreased NDS and infarct volume, brain barrier permeability, and brain edema.
Conclusion: tMCAO is associated with neurologic deficit scores, infarct, blood brain barrier permeability, and brain edema consistent with an active role in the genesis of ischemic protection.

متن کامل [PDF 267 kb]   (۱۵۹۱۴۸ دریافت)    
نوع مطالعه: مقاله پژوهشی |
دریافت: 1390/6/2 | پذیرش: 1393/4/1 | انتشار: 1393/4/1

فهرست منابع
1. Bigdeli MR, Hajizadeh S, Froozandeh M, Rasulian B, Heidarianpour A, Khoshbaten A. Prolonged and intermittent normobaric hyperoxia induce different degrees of ischemic tolerance in rat brain tissue. Brain Res .2007; 1152: 228-33. [DOI:10.1016/j.brainres.2007.03.068] [PMID]
2. Pradillo J, Hurtado O, Romera C, et al. TNF-R1 mediayes increased neuronal membrane EAAT3 experession after in vivo cerebral ischemic preconditioning. Neuroscience. 2006; 138: 1171-8. [DOI:10.1016/j.neuroscience.2005.12.010] [PMID]
3. Gidday JM, Fitzgibbons JC, Shah AR, Park TS. Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett. 1994; 168: 221-4. [DOI:10.1016/0304-3940(94)90455-3]
4. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K. Ischemic tolerance phenomenon found in the brain. Brain Res. 1990; 528: 21-4. [DOI:10.1016/0006-8993(90)90189-I]
5. Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ. Anoxic preconditioning in hippocampal slices: role of adenosine. Neuroscience. 1996; 75: 687-94. [DOI:10.1016/0306-4522(96)00311-9]
6. Currie RW, Tanguay RM. Analysis of RNA for transcripts for catalase and HSP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol. 1991; 69: 375-82. [DOI:10.1139/o91-057] [PMID]
7. Ohtsuki T, Matsumoto M, Kuwabara K, et al. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 1992; 599: 246-52. [DOI:10.1016/0006-8993(92)90398-S]
8. Shimazaki K, Ishida A, Kawai N. Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci Res. 1994; 20: 95-9. [DOI:10.1016/0168-0102(94)90026-4]
9. Bigdeli MR, Hajizadeh S, Froozandeh M, Heidarianpour A, Rasoulian B, Asgari AR, Pourkhalili K, Khoshbaten K. Normobaric Hyperoxia Induces Ischemic Tolerance and Upregulation of Glutamate Transporters in the Rat brain and Serum TNF-α Level. Exp Neurol. 2008; 212: 298-306. [DOI:10.1016/j.expneurol.2008.03.029] [PMID]
10. Wada K, Kiyazawa T, Nomura N, et al. Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation. Acta Neurochir Suppl. 2000; 76: 285-90. [DOI:10.1007/978-3-7091-6346-7_59]
11. Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-κB. J Neurochem. 2001; 78: 909-19. [DOI:10.1046/j.1471-4159.2001.00463.x] [PMID]
12. Bigdeli MR, Khoshbaten A. In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-alpha converting enzyme/tumor necrosis factor-alpha/nuclear factor-kappaB. Neuroscience. 2008; 153: 671-8. [DOI:10.1016/j.neuroscience.2008.02.064] [PMID]
13. Al-Motabagani MA. Histological changes in the alveolar structure of the rat lung after exposure to hyperoxia. Ital J Anat Embryol. 2005; 110: 209-23.
14. Orrenius S, McCabe MJ J, Nicotera P. Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett. 1992; 64: 357-64. [DOI:10.1016/0378-4274(92)90208-2]
15. Warner D, Sheng H, and Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004; 207: 3221-31. [DOI:10.1242/jeb.01022] [PMID]
16. Ohtsuki T, Matsumoto M, Kuwabara K, et al. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 1992; 599: 246-52. [DOI:10.1016/0006-8993(92)90398-S]
17. Oh DJ, Kim YH, Kim CH, Park JW, Kim MS. Pretreatment of hyperbaric oxygenation increases the activation of myocardial antioxidant enzymes and protect the ischemiareperfusion injury of the heart. Korean J Physiol Pharmacol. 1997; 1: 749-58.
18. Kim Y, Chun Y, Park J, Kim C, Kim M. Involvement of adrenergic pathways in activation of catalase by myocardial ischemia-reperfusion. Am J Physiol Regulatory Integrative Comp Physiol. 2002; 282: 1450-8. [DOI:10.1152/ajpregu.00278.2001] [PMID]
19. Namba, K, Takeda Y, Sunami K, Hirakawa M. Temporal profiles of the levels of endogenous antioxidants after four-vessel occlusion in rats. J Neurosurg Anesthesiol. 2001; 13: 131-7. [DOI:10.1097/00008506-200104000-00010] [PMID]
20. Sugawara T, Noshita N, Lewén A, et al. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci. 2002; 22: 209-17. [DOI:10.1523/JNEUROSCI.22-01-00209.2002] [PMCID]
21. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke; 1989; 20: 84-91. [DOI:10.1161/01.STR.20.1.84] [PMID]
22. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990; 10: 290-3. [DOI:10.1038/jcbfm.1990.47] [PMID]
23. Xia E, Rao G, Van Remmen H, Heydari AR, Richardson A. Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction. J Nutr. 1995; 125: 195-201.
24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54. [DOI:10.1016/0003-2697(76)90527-3]
25. Genet S, Kale RK, Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem. 2002; 236: 7-12. [DOI:10.1023/A:1016103131408] [PMID]
26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227: 680-5. [DOI:10.1038/227680a0] [PMID]
27. Lin CL, Chen HJ, Hou WC. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis. 2002; 23: 513-6. https://doi.org/10.1002/1522-2683(200202)23:4<513::AID-ELPS513>3.0.CO;2-J [DOI:10.1002/1522-2683(200202)23:43.0.CO;2-J]
28. Helms A, Whelan H, Torbey M. Hyperbaric oxygen therapy of cerebral ischemia. Cerebrovascular Dis. 2005; 20: 417-26. [DOI:10.1159/000088979] [PMID]
29. Ostrowski R, Colohan A, Zhang J. Mechanisms of hyperbaric oxygen-induces neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005; 25: 554-71. [DOI:10.1038/sj.jcbfm.9600048] [PMID]
30. Leong KG,Karsan A. Signaling pathways mediated by tumor necrosis factor a. Histol Histopathol. 2000. 15: 1303-25.
31. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver. J Biol Chem. 2001; 276: 38388-93. [DOI:10.1074/jbc.M105395200] [PMID]
32. Fujimura M, Morita-Fujimura Y, Narasimhan P, Copin JC, Kawase M, Chan PH. Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke. 1999; 30: 2408-15. [DOI:10.1161/01.STR.30.11.2408] [PMID]
33. Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci. 2002; 22: 7923-30. [DOI:10.1523/JNEUROSCI.22-18-07923.2002] [PMCID]
34. Leong KG, Karsan A. Signaling pathways mediated by tumor necrosis factor a. Histol Histopathol. 2000; 15: 1303-25.
35. Li F, Silva MD, Liu KF, et al. Secondary decline in apparent diffusion coefficient and neurological outcomes after a short period of focal brain ischemia in rats. Ann Neurol. 2000; 48: 236-44. https://doi.org/10.1002/1531-8249(200008)48:2<236::AID-ANA14>3.0.CO;2-7 [DOI:10.1002/1531-8249(200008)48:23.0.CO;2-7]
36. Kastrup A, Engelhorn T, Beaulieu C, de Crespigny A, Moseley ME. Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat. J Neurol Sci. 1999; 166: 91-9. [DOI:10.1016/S0022-510X(99)00121-5]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb