دوره 25، شماره 113 - ( 6-1396 )                   جلد 25 شماره 113 صفحات 57-43 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baluchnejadmojarad T, Roghani M, Kazemloo P. The Role of Acetylcholine Nicotinic Receptors, Protein Kinase B and Protein Kinase M on the Protective Effect of Rosmarinic Acid in Beta Amyloid (25-35) Induced Rat Model of Alzheimer’s Disease. J Adv Med Biomed Res 2017; 25 (113) :43-57
URL: http://journal.zums.ac.ir/article-1-4792-fa.html
بلوچ نژاد مجرد تورانداخت، روغنی مهرداد، کاظملو پرستو. نقش گیرنده‌های نیکوتینی استیل کولین، پروتئین کیناز B و پروتئین کیناز Mζ بر اثر حفاظتی اسید رزمارینیک در مدل بیماری آلزایمر القا شده به وسیله‌ی بتا آمیلوئید (35-25) در موش صحرایی. Journal of Advances in Medical and Biomedical Research. 1396; 25 (113) :43-57

URL: http://journal.zums.ac.ir/article-1-4792-fa.html


1- دکترای تخصصی فیزیولوژی انسانی، استاد گروه فیزیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی ایران، تهران ، tmojarad@yahoo.com
2- دکترای تخصصی فیزیولوژی انسانی، استاد مرکز تحقیقات نوروفیزیولوژی، دانشگاه شاهد، تهران
3- کارشناس ارشد فیزیولوژی، گروه فیزیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی ایران، تهران
چکیده:   (155665 مشاهده)
Background and Objective: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and results from the extracellular accumulation of b-amyloid peptides and the resulting neuronal dysfunction. In this study, the role of nicotinic acetylcholine receptors, protein kinase B (PKB) and protein kinase M (PKM) were evaluated in order to examine the mechanism of the protective effects of rosmarinic acid in a rat model of Alzheimer’s disease.
Materials and Methods: Animals[vog1]  were divided into 6 groups consisting of 1) Sham, 2) Beta amyloid, 3) Rosmarinic acid pretreated beta amyloid (25 mg/kg), 4-6) Rosmarinic acid and PKM inhibitor, PKB inhibitor and acetylcholine receptor inhibitor pretreated beta amyloid. Two weeks post-surgery, behavioral (alternation percent in Y maze and step through latency in passive avoidance task) and histochemical (hippocampal malondialdehyde and neuronal density measurement) studies were performed.
Results: Pretreatment of beta amyloid animals with rosmarinic acid considerably alleviated the behavioral and histochemical disturbances related to the hippocampus. In this group, nicotinic acetylcholine receptors and PKB inhibitors decreased step through latency (p<0.001) and increased hippocampal malondialdehyde levels (p<0.001). In addition, PKB inhibitors decreased hippocampal neuronal density in rosmarinic acid pretreated beta amyloid rats (p<0.05).
Conclusion: Based on the findings of this study, it seems that in this experimental model of Alzheimer’s disease the protective effects of rosmarinic acid were derived from its antioxidant properties and partially via nicotinic acetylcholine receptors, PKB and PKM.

 [vog1]Which animals??
How many???
متن کامل [PDF 432 kb]   (156202 دریافت)    
نوع مطالعه: کارآزمایی بالینی |
دریافت: 1396/6/4 | پذیرش: 1396/6/4 | انتشار: 1396/6/4

فهرست منابع
1. Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008; 7: 812-26. [DOI:10.1016/S1474-4422(08)70169-8]
2. Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Prog Neurobiol. 2007; 82: 11-32. [DOI:10.1016/j.pneurobio.2007.02.001] [PMID]
3. De Felice FG, Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer's-linked toxins: Insulin signaling prevents the pathogenic binding of A beta oligomers. Proc Natl Acad Sci U S A. 2009; 106: 1971-76. [DOI:10.1073/pnas.0809158106] [PMID] [PMCID]
4. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci. 2007; 8: 101-13. [DOI:10.1038/nrn2055] [PMID]
5. Perry E, Martin-Ruiz C, Lee M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol. 2000; 393: 215-22. [DOI:10.1016/S0014-2999(00)00064-9]
6. Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 2008; 6: 2698-706. [DOI:10.1371/journal.pbio.0060318] [PMID] [PMCID]
7. Liu XF, Tari PK, Haas K. PKM zeta restricts dendritic arbor growth by filopodial and branch stabilization within the intact and awake developing brain. J Neurosci. 2009; 29: 12229-35. [DOI:10.1523/JNEUROSCI.2842-09.2009] [PMID] [PMCID]
8. Migues PV, Hardt O, Wu DC, et al. PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci. 2010; 13: 630-4. [DOI:10.1038/nn.2531] [PMID]
9. Hayes J, Li S, Anwyl R, Rowan MJ. A role for protein kinase A and protein kinase M zeta in muscarinic acetylcholine receptor-initiated persistent synaptic enhancement in rat hippocampus in vivo. Neurosci. 2008; 151: 604-12. [DOI:10.1016/j.neuroscience.2007.10.016] [PMID]
10. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001; 17: 615-75. [DOI:10.1146/annurev.cellbio.17.1.615] [PMID]
11. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296: 1655-7. [DOI:10.1126/science.296.5573.1655] [PMID]
12. Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006; 23: 3375-84. [DOI:10.1111/j.1460-9568.2006.04859.x] [PMID]
13. Petersen M, Simmonds MS, Rosmarinic acid. Phytochemistry. 2003; 62: 121-5. [DOI:10.1016/S0031-9422(02)00513-7]
14. Baluchnejadmojarad T, Roghani M. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res. 2011; 224: 305-10. [DOI:10.1016/j.bbr.2011.06.007] [PMID]
15. Baluchnejadmojarad T, Roghani M, karimi N, kamran M. Varenicline Ameliorates Learning and Memory Deficits in Amyloid β(25-35) Rat Model of Alzheimer's Disease. BCN. 2011; 3: 3-9.
16. Wirths O, Weis J, Kayed R, Saido TC, Bayer TA. Age-ependent axonal degeneration in an Alzheimer mouse model. Neurobiol Aging. 2007; 28: 1689-99. [DOI:10.1016/j.neurobiolaging.2006.07.021] [PMID]
17. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 2003; 23: 2212-7. [DOI:10.1523/JNEUROSCI.23-06-02212.2003] [PMCID]
18. Keller JN, Schmitt FA, Scheff SW, et al. Evidence of increased oxidative damage in 8. 19- Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatr Med. 2004; 20: 329-59. [DOI:10.1016/j.cger.2004.02.005] [PMID]
19. Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr. 2014; 5: 394-403. [DOI:10.3945/an.113.005264] [PMID] [PMCID]
20. Yamada M, Ono K, Hamaguchi T, Noguchi-Shinohara M. Natural Phenolic Compounds as therapeutic and preventive agents for cerebral amyloidosis. Adv Exp Med Biol. 2015; 863: 79-94. [DOI:10.1007/978-3-319-18365-7_4] [PMID]
21. Pimlott SL, Piggott M, Owens J, et al. Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuro Psychopharmacol. 2004; 29: 108-16. [DOI:10.1038/sj.npp.1300302] [PMID]
22. Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci. 2015; 36: 96-108. [DOI:10.1016/j.tips.2014.12.002] [PMID] [PMCID]
23. Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol. 2016; 144: 142-57. [DOI:10.1016/j.pneurobio.2016.01.002] [PMID]
24. Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci. 2015; 6: 340. [DOI:10.3389/fnagi.2014.00340] [PMID] [PMCID]
25. Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016; 43: 1376-86. [DOI:10.1007/s00259-016-3349-x] [PMID] [PMCID]
26. Pettit DL, Shao Z, Yakel JL. Beta-Amyloid (1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci. 2001; 21: RC120. [DOI:10.1523/JNEUROSCI.21-01-j0003.2001] [PMCID]
27. Pinto T, Lanctôt KL, Herrmann N. Revisiting the cholinergic hypothesis of behavioral behavioral and psychological symptoms in dementia of the Alzheimer's type. Ageing Res Rev. 2011; 10: 404-12. [DOI:10.1016/j.arr.2011.01.003]
28. Serrano P, Yao Y, Sacktor TC. Persistent phosphorylation by protein kinase Mzeta Persistent phosphorylation by protein kinase Mzeta maintains late-phaselong-term potentiation. J Neurosci. 2005; 25: 1979-84. [DOI:10.1523/JNEUROSCI.5132-04.2005] [PMID] [PMCID]
29. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296: 1655-7. [DOI:10.1126/science.296.5573.1655] [PMID]
30. Opazo P, Watabe AM, Grant SG, O'Dell TJ. Phosphatidylinositol 3- kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci. 2003; 23: 3679-88. [DOI:10.1523/JNEUROSCI.23-09-03679.2003] [PMCID]
31. Hales JB, Ocampo AC, Broadbent NJ, Clark RE. Consolidation of spatial memory in the rat: Findings using zeta-inhibitory peptide. Neurobiol Learn Mem. 2016; 136: 220-27. [DOI:10.1016/j.nlm.2016.11.003] [PMID]
32. Racaniello M, Cardinale A, Mollinari C, et al. Phosphorylation changes of CaMKII, ERK1/2, PKB/Akt kinases and CREB activation during early long-term potentiationat Schaffer collateral-CA1 mouse hippocampal synapses. Neurochem Res. 2010; 35: 239-46. [DOI:10.1007/s11064-009-0047-0] [PMID]
33. Kim D, Chung J. Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol. 2002; 35: 106-1. [DOI:10.5483/BMBRep.2002.35.1.106] [PMID]
34. Fan S, Zhang B, Luan P, et al. PI3K/AKT/mTOR/p70S6K pathway is involved in Aβ25-35-induced autophagy. Biomed Res Int. 2015; 2015: 161020. [DOI:10.1155/2015/161020] [PMID] [PMCID]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb