1. Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008; 7: 812-26. [
DOI:10.1016/S1474-4422(08)70169-8]
2. Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Prog Neurobiol. 2007; 82: 11-32. [
DOI:10.1016/j.pneurobio.2007.02.001] [
PMID]
3. De Felice FG, Vieira MN, Bomfim TR, et al. Protection of synapses against Alzheimer's-linked toxins: Insulin signaling prevents the pathogenic binding of A beta oligomers. Proc Natl Acad Sci U S A. 2009; 106: 1971-76. [
DOI:10.1073/pnas.0809158106] [
PMID] [
PMCID]
4. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci. 2007; 8: 101-13. [
DOI:10.1038/nrn2055] [
PMID]
5. Perry E, Martin-Ruiz C, Lee M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol. 2000; 393: 215-22. [
DOI:10.1016/S0014-2999(00)00064-9]
6. Serrano P, Friedman EL, Kenney J, et al. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 2008; 6: 2698-706. [
DOI:10.1371/journal.pbio.0060318] [
PMID] [
PMCID]
7. Liu XF, Tari PK, Haas K. PKM zeta restricts dendritic arbor growth by filopodial and branch stabilization within the intact and awake developing brain. J Neurosci. 2009; 29: 12229-35. [
DOI:10.1523/JNEUROSCI.2842-09.2009] [
PMID] [
PMCID]
8. Migues PV, Hardt O, Wu DC, et al. PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci. 2010; 13: 630-4. [
DOI:10.1038/nn.2531] [
PMID]
9. Hayes J, Li S, Anwyl R, Rowan MJ. A role for protein kinase A and protein kinase M zeta in muscarinic acetylcholine receptor-initiated persistent synaptic enhancement in rat hippocampus in vivo. Neurosci. 2008; 151: 604-12. [
DOI:10.1016/j.neuroscience.2007.10.016] [
PMID]
10. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001; 17: 615-75. [
DOI:10.1146/annurev.cellbio.17.1.615] [
PMID]
11. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296: 1655-7. [
DOI:10.1126/science.296.5573.1655] [
PMID]
12. Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006; 23: 3375-84. [
DOI:10.1111/j.1460-9568.2006.04859.x] [
PMID]
13. Petersen M, Simmonds MS, Rosmarinic acid. Phytochemistry. 2003; 62: 121-5. [
DOI:10.1016/S0031-9422(02)00513-7]
14. Baluchnejadmojarad T, Roghani M. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res. 2011; 224: 305-10. [
DOI:10.1016/j.bbr.2011.06.007] [
PMID]
15. Baluchnejadmojarad T, Roghani M, karimi N, kamran M. Varenicline Ameliorates Learning and Memory Deficits in Amyloid β(25-35) Rat Model of Alzheimer's Disease. BCN. 2011; 3: 3-9.
16. Wirths O, Weis J, Kayed R, Saido TC, Bayer TA. Age-ependent axonal degeneration in an Alzheimer mouse model. Neurobiol Aging. 2007; 28: 1689-99. [
DOI:10.1016/j.neurobiolaging.2006.07.021] [
PMID]
17. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 2003; 23: 2212-7. [
DOI:10.1523/JNEUROSCI.23-06-02212.2003] [
PMCID]
18. Keller JN, Schmitt FA, Scheff SW, et al. Evidence of increased oxidative damage in 8. 19- Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatr Med. 2004; 20: 329-59. [
DOI:10.1016/j.cger.2004.02.005] [
PMID]
19. Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr. 2014; 5: 394-403. [
DOI:10.3945/an.113.005264] [
PMID] [
PMCID]
20. Yamada M, Ono K, Hamaguchi T, Noguchi-Shinohara M. Natural Phenolic Compounds as therapeutic and preventive agents for cerebral amyloidosis. Adv Exp Med Biol. 2015; 863: 79-94. [
DOI:10.1007/978-3-319-18365-7_4] [
PMID]
21. Pimlott SL, Piggott M, Owens J, et al. Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuro Psychopharmacol. 2004; 29: 108-16. [
DOI:10.1038/sj.npp.1300302] [
PMID]
22. Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci. 2015; 36: 96-108. [
DOI:10.1016/j.tips.2014.12.002] [
PMID] [
PMCID]
23. Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol. 2016; 144: 142-57. [
DOI:10.1016/j.pneurobio.2016.01.002] [
PMID]
24. Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci. 2015; 6: 340. [
DOI:10.3389/fnagi.2014.00340] [
PMID] [
PMCID]
25. Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016; 43: 1376-86. [
DOI:10.1007/s00259-016-3349-x] [
PMID] [
PMCID]
26. Pettit DL, Shao Z, Yakel JL. Beta-Amyloid (1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci. 2001; 21: RC120. [
DOI:10.1523/JNEUROSCI.21-01-j0003.2001] [
PMCID]
27. Pinto T, Lanctôt KL, Herrmann N. Revisiting the cholinergic hypothesis of behavioral behavioral and psychological symptoms in dementia of the Alzheimer's type. Ageing Res Rev. 2011; 10: 404-12. [
DOI:10.1016/j.arr.2011.01.003]
28. Serrano P, Yao Y, Sacktor TC. Persistent phosphorylation by protein kinase Mzeta Persistent phosphorylation by protein kinase Mzeta maintains late-phaselong-term potentiation. J Neurosci. 2005; 25: 1979-84. [
DOI:10.1523/JNEUROSCI.5132-04.2005] [
PMID] [
PMCID]
29. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296: 1655-7. [
DOI:10.1126/science.296.5573.1655] [
PMID]
30. Opazo P, Watabe AM, Grant SG, O'Dell TJ. Phosphatidylinositol 3- kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci. 2003; 23: 3679-88. [
DOI:10.1523/JNEUROSCI.23-09-03679.2003] [
PMCID]
31. Hales JB, Ocampo AC, Broadbent NJ, Clark RE. Consolidation of spatial memory in the rat: Findings using zeta-inhibitory peptide. Neurobiol Learn Mem. 2016; 136: 220-27. [
DOI:10.1016/j.nlm.2016.11.003] [
PMID]
32. Racaniello M, Cardinale A, Mollinari C, et al. Phosphorylation changes of CaMKII, ERK1/2, PKB/Akt kinases and CREB activation during early long-term potentiationat Schaffer collateral-CA1 mouse hippocampal synapses. Neurochem Res. 2010; 35: 239-46. [
DOI:10.1007/s11064-009-0047-0] [
PMID]
33. Kim D, Chung J. Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol. 2002; 35: 106-1. [
DOI:10.5483/BMBRep.2002.35.1.106] [
PMID]
34. Fan S, Zhang B, Luan P, et al. PI3K/AKT/mTOR/p70S6K pathway is involved in Aβ25-35-induced autophagy. Biomed Res Int. 2015; 2015: 161020. [
DOI:10.1155/2015/161020] [
PMID] [
PMCID]