Volume 28, Issue 130 (September & October 2020)                   J Adv Med Biomed Res 2020, 28(130): 247-252 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostame Z, Faghihzadeh S, Taghilou B, Khosravi Y. Determining the Incidence Rate and Risk Factors of Brucellosis in Zanjan Province (Iran) from 2012 to 2017: A Spatiotemporal Analysis. J Adv Med Biomed Res 2020; 28 (130) :247-252
URL: http://journal.zums.ac.ir/article-1-5764-en.html
1- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2- Dept. of Biostatistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , s.faghihzadeh@gmail.com
3- Dept. of Entomology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
4- Dept. of Environmental Sciences, School of Sciences, University of Zanjan, Zanjan, Iran
Abstract:   (141951 Views)
Background and Objectives
Zanjan is reported as the hot spot region of  Brucellosis infection in Iran. This longitudinal study aimed to determine the epidemiologic pattern as well as the risk of Brucellosis using geospatial estimation in Zanjan province.
Materials and Methods
The data used in this study were collected from the Health Center of the cities of Zanjan province during 2012-2017 and after the approval of the disease control unit of the province, entered the study. This longitudinal study was used to determine the annual pattern of the disease and to identify high-risk areas using Moran statistics and then analyzed using the temporal spatial cox model.
Results
The results of the research show that the number of affected people in the province was increased after 2012 and the maximum number was observed from 2013 to 2014, however, from 2015 to 2016 it showed a significant decrease. Spatial variations show that the incidenceof the disease was increased in all areas over the six years. the temporal variations shows that during the years 2012 to 2017 the incidence of brucellosis in spring and summer was higher than other seasons; thereafter the incidence peak was witnessed in Khordad, Tir and Mordad.
Conclusion
The results of this study can be used to determine the starting point of future programs and to evaluate their effectiveness.
 
Full-Text [PDF 418 kb]   (155094 Downloads)    
Type of Study: Original Article | Subject: Health improvement strategies
Received: 2019/09/6 | Accepted: 2020/09/16 | Published: 2020/09/21

References
1. Dehghan A, Sadeghian M, Jafarnejad A. Epidemiologic survey of Brucellosis in Fasa during 2009-2017. Mashhad Univ Med Sci. 2019;62(2):1449-55.
2. Liang P, Zhao Y, Zhao J, Pan D, Guo Z. The spatiotemporal distribution of human brucellosis in mainland China from 2007-2016. BMC Infect Dis. 2020;20(1):249. [DOI:10.1186/s12879-020-4946-7]
3. Pakzad R, Pakzad I, Safiri S, et al. Spatiotemporal analysis of brucellosis incidence in Iran from 2011 to 2014 using GIS. Int J Infect Dis. 2018;67:129-36. [DOI:10.1016/j.ijid.2017.10.017]
4. Boxer P, Drawve G, Caplan JM. Neighborhood violent crime and academic performance: a geospatial analysis. Am J Communit Psychol. 2020; 65(3,4):343-52 [DOI:10.1002/ajcp.12417]
5. Zhao C, Yang Y, Wu S, et al. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Scientific Reports. 2020;10(1):5896. [DOI:10.1038/s41598-020-62517-7]
6. Jafari-Koshki T, Arsang-Jang S, Mahaki B. Bladder cancer in Iran: Geographical distribution and risk factors. Int J Cancer Manag. 2017;10(2) [DOI:10.5812/ijcp.5610]
7. Nyadanu SD, Pereira G, Nawumbeni DN, Adampah T. Geo-visual integration of health outcomes and risk factors using excess risk and conditioned choropleth maps: a case study of malaria incidence and sociodemographic determinants in Ghana. BMC Pub Health. 2019;19(1):514. [DOI:10.1186/s12889-019-6816-z]
8. Roberson S, Dawit R, Moore J, Odoi A. An exploratory investigation of geographic disparities of stroke prevalence in Florida using circular and flexible spatial scan statistics. .Plos One 2019;14(8):e0218708. [DOI:10.1371/journal.pone.0218708]
9. Cheung YTD, Spittal MJ, Williamson MK, Tung SJ, Pirkis J. Application of scan statistics to detect suicide clusters in Australia. PLOS ONE. 2013;8(1):e54168. [DOI:10.1371/journal.pone.0054168]
10. Ozdenerol E, Williams BL, Kang SY, Magsumbol MS. Comparison of spatial scan statistic and spatial filtering in estimating low birth weight clusters. Int J Health Geogr. 2005;4:19 [DOI:10.1186/1476-072X-4-19]
11. Jafari-Koshki T, Arsang-Jang S, Raei M. Applying spatiotemporal models to study risk of smear-positive tuberculosis in Iran, 2001-2012. Int J Tuberc Lung Dis. 2015;19(4):469-74. [DOI:10.5588/ijtld.14.0459]
12. Rastaghi S, Jafari-Koshki T, Mahaki B. Application of Bayesian multilevel space-time models to study relative risk of esophageal cancer in Iran 2005-2007 at a county level. Asian Pac J Cancer Prev. 2015;16(14):5787-92. [DOI:10.7314/APJCP.2015.16.14.5787]
13. Hastie TJ, Tibshirani RJJFCP. Generalized additive models, vol. 43 Boca Raton. 1990.
14. Diggle PJ, Moraga P, Rowlingson B, Taylor BMJSS. Spatial and spatio-temporal log-Gaussian cox processes: extending the geostatistical paradigm.Stat Sci. 2013;28(4):542-63. [DOI:10.1214/13-STS441]
15. Gabriel EJM, Probability CiA. Estimating second-order characteristics of inhomogeneous spatio-temporal point processes. Statistic Theory. 2014;16(2):411-31. [DOI:10.1007/s11009-013-9358-3]
16. Ripley BDJJoap. The second-order analysis of stationary point processes. J Applied Prob 1976;13(2):255-66. [DOI:10.2307/3212829]
17. Tamayo-Uria I, Mateu J, Diggle PJJSS. Modelling of the spatio-temporal distribution of rat sightings in an urban environment. Spatial Statistics. 2014;9:192-206. [DOI:10.1016/j.spasta.2014.03.005]
18. Mirnejad R, Jazi FM, Mostafaei S, Sedighi M. Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples. Microb Pathogen. 2017;109:8-14. [DOI:10.1016/j.micpath.2017.05.019]
19. Hashtarkhani S, Akbari M, Jarahi L, Etminani K. Epidemiological characteristics and trend of incidence of human brucellosis in Razavi Khorasan province. Mashhad Univ Med Sci. 2015;58(9):531-8.
20. Seyedalizadeh N, Alesheikh A, Ahmadkhani M. Spatio-statistical modeling of human brucellosis using environmental parameters: A case study of Northern Iran. Int Arch Photogramm Remote Sens.2019; XLII-4/W18: 969-973 [DOI:10.5194/isprs-archives-XLII-4-W18-969-2019]
21. Ahmadkhani M, Alesheikh AAJAPJoTD. Space-time analysis of human brucellosis considering environmental factors in Iran. Asian Pacific J Trop Dis.2017;7(5):257-65. [DOI:10.12980/apjtd.7.2017D6-353]
22. Mohammadi N, Kamali K, Abedini Y, Ahadnejad M, Azari M.Medical meteorology; the relationship between meteorological parameters (Humidity, Rainfall, Wind, and Temperature) and brucellosis in Zanjan province. J Hum Environ Health Promot. 2016;1(3):149-58. [DOI:10.29252/jhehp.1.3.149]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb