Volume 30, Issue 138 (January & February 2022)                   J Adv Med Biomed Res 2022, 30(138): 47-53 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Goodarzi R, Yousefimashouf R, Sedighi I, Moradi A, Nouri F, Taheri M. Detection of Adhesion Encoding Genes, Antibacterial Susceptibility Test and Biofilm Formation of Uropathogenic Escherichia coli Isolated from Urinary Tract Infections in Children. J Adv Med Biomed Res 2022; 30 (138) :47-53
URL: http://journal.zums.ac.ir/article-1-6307-en.html
1- Dept. of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Dept. of Pediatric, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
3- Dept. of Community Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
4- Dept. of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
5- Dept. of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , motaheri360@gmail.com
Abstract:   (109817 Views)

Background and Objective: Urinary tract infections (UTIs) are among the most common infections in children worldwide and Escherichia coli is the main pathogen that can cause UTI. The current study aims to investigate the antibacterial susceptibility pattern, biofilm production, and determine the frequency of afa and sfa genes in E. coli strains isolated from pediatrics with UTI from 2018 to 2019 in Hamadan, Iran.
Materials and Methods: In this cross-sectional study, 112 E. coli strains were collected from children with UTI. Disc diffusion method was performed to determine antimicrobial susceptibility. The PCR was used to detect the existence of afa and sfa genes. A microtiter plate assay was performed to test the biofilm production ability.
Results: 81 (72.32%) of the 112 E. coli strains isolated from UTI samples were positive for biofilm development (22.2% strong, 33.3% moderate, and 44.4% weak). The afa and sfa genes were detected in 29.4% and 49.1% of the isolates, respectively. Most isolates were resistant to cephalothin (76.79%) and sensitive to imipenem and meropenem (100%).
Conclusion: The afa and sfa genes have a significant correlation with strong biofilm formation in uropathogenic E. coli (UPEC).

Full-Text [PDF 395 kb]   (107175 Downloads) |   |   Full-Text (HTML)  (1768 Views)  

 The afa and sfa genes have a significant correlation with strong biofilm formation in uropathogenic E. coli (UPEC).


Type of Study: Original Article | Subject: Medical Biology
Received: 2020/11/26 | Accepted: 2021/03/3 | Published: 2021/10/17

References
1. Aljindan R, Alsamman K, Elhadi N. ERIC-PCR genotyping of Acinetobacter baumannii isolated from different clinical specimens. Saudi J Med Med Sci. 2018;6(1):13. [DOI:10.4103/sjmms.sjmms_138_16] [PMID] [PMCID]
2. Kosari F, Taheri M, Moradi A, Hakimi Alni R, Alikhani MY. Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC cancer. 2020;20(1):1-8. [DOI:10.1186/s12885-020-06736-1] [PMID] [PMCID]
3. Movahedi M, Zarei O, Hazhirkamal M, Karami P, Shokoohizadeh L, Taheri M. Molecular typing of Escherichia coli strains isolated from urinary tract infection by ERIC-PCR. Gene Rep. 2021;23:101058. [DOI:10.1016/j.genrep.2021.101058]
4. Schembri MA, Kjaergaard K, Sokurenko EV, Klemm P. Molecular characterization of the Escherichia coli FimH adhesin. J Infect Dis. 2001;183(Supplement_1):S28-S31. [DOI:10.1086/318847] [PMID]
5. Madison B, Ofek I, Clegg S, Abraham SN. Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun. 1994;62(3):843-8. [DOI:10.1128/iai.62.3.843-848.1994] [PMID] [PMCID]
6. Tohidi B, Rahimmalek M, Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153-61. [DOI:10.1016/j.foodchem.2016.09.203] [PMID]
7. Galotto M, De Dicastillo CL, Torres A, Guarda A. Thymol: Use in antimicrobial packaging. Antimicrobial Food Packaging: Elsevier; 2016. p. 553-62. [DOI:10.1016/B978-0-12-800723-5.00045-0]
8. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. 2018;56(4). [DOI:10.1128/JCM.01934-17]
9. Balighian E, Burke M. Urinary tract infections in children. 2018 ;39(1):3-12. [DOI:10.1542/pir.2017-0007] [PMID]
10. Sanchez GV, Master RN, Karlowsky JA, Bordon JM. In vitro antimicrobial resistance of urinary Escherichia coli isolates among US outpatients from 2000 to 2010. Antimicrob Agents Chemother. 2012;56(4):2181-3. [DOI:10.1128/AAC.06060-11] [PMID] [PMCID]
11. Pourzare M, Derakhshan S, Roshani D. Distribution of uropathogenic virulence genes in Escherichia coli isolated from children with urinary tract infection in Sanandaj, Iran. Arch Pediatr Infect Dis. 2017;5(3):e41995. [DOI:10.5812/pedinfect.41995]
12. Tajbakhsh E, Ahmadi P, Abedpour-Dehkordi E, Arbab-Soleimani N, Khamesipour F. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrob Resist Infect Control. 2016;5(1):11. [DOI:10.1186/s13756-016-0109-4] [PMID] [PMCID]
13. Cassell GH, Mekalanos J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. Jama. 2001;285(5):601-5. [DOI:10.1001/jama.285.5.601] [PMID]
14. Nouri F, Karami P, Zarei O, Kosari F, Alikhani MY, Zandkarimi E, et al. Prevalence of common nosocomial infections and evaluation of antibiotic resistance patterns in patients with secondary infections in Hamadan, Iran. Infect Drug Resist. 2020;13:2365. [DOI:10.2147/IDR.S259252] [PMID] [PMCID]
15. Rahdar M, Rashki A, Miri HR, Ghalehnoo MR. Detection of pap, sfa, afa, foc, and fim adhesin-encoding operons in uropathogenic Escherichia coli isolates collected from patients with urinary tract infection. Jundishapur J Microbiol. 2015;8(8). [DOI:10.5812/jjm.22647]
16. Tabasi M, Karam MRA, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015;6(4):261-8. [DOI:10.1016/j.phrp.2015.08.002] [PMID] [PMCID]
17. Rivera-Sanchez R, Delgado-Ochoa D, Flores-Paz RR, García-Jiménez EE, Espinosa-Hernández R, Bazan-Borges AA, et al. Prospective study of urinary tract infection surveillance after kidney transplantation. BMC Infect Dis. 2010;10(1):245. [DOI:10.1186/1471-2334-10-245] [PMID] [PMCID]
18. Stepanović S, Ćirković I, Mijač V, Švabić-Vlahović M. Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol. 2003;20(3):339-43. [DOI:10.1016/S0740-0020(02)00123-5]
19. Moez NM, Mashouf RY, Sedighi I, Shokoohizadeh L, Taheri M. Phylogroup classification and investigation the relationships between phylogroups and antibiotic resistance patterns of uropathogenic E. coli isolated from pediatric urinary tract infection. Gene Reports. 2020;20:100758. [DOI:10.1016/j.genrep.2020.100758]
20. Jadhav S, Hussain A, Devi S, Kumar A, Parveen S, Gandham N, et al. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. PloS one. 2011;6(3):e18063. [DOI:10.1371/journal.pone.0018063] [PMID] [PMCID]
21. Sedighi I, Arabestani MR, Rahimbakhsh A, Karimitabar Z, Alikhani MY. Dissemination of extended-spectrum β-lactamases and quinolone resistance genes among clinical isolates of uropathogenic Escherichia coli in children. Jundishapur J Microbiol. 2015;8(7). [DOI:10.5812/jjm.19184v2]
22. Usein CR, Damian M, Tatu‐Chitoiu D, Capusa C, Fagaras R, Tudorache D, et al. Prevalence of virulence genes in Escherichia coli strains isolated from Romanian adult urinary tract infection cases. J Cell Mol Med. 2001;5(3):303-10. [DOI:10.1111/j.1582-4934.2001.tb00164.x] [PMID] [PMCID]
23. Malekzadegan Y, Khashei R, Ebrahim-Saraie HS, Jahanabadi Z. Distribution of virulence genes and their association with antimicrobial resistance among uropathogenic Escherichia coli isolates from Iranian patients. BMC Infect Dis. 2018;18(1):572. [DOI:10.1186/s12879-018-3467-0] [PMID] [PMCID]
24. Kiehlbauch JA, Hannett GE, Salfinger M, Archinal W, Monserrat C, Carlyn C. Use of the National Committee for Clinical Laboratory Standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J Clin Microbiol. 2000;38(9):3341-8. [DOI:10.1128/JCM.38.9.3341-3348.2000] [PMID] [PMCID]
25. Kot B, Wicha J, Gruzewska A, Piechota M, Wolska K, Obrebska M. Virulence factors, biofilm-forming ability, and antimicrobial resistance of urinary Escherichia coli strains isolated from hospitalized patients. Turk J Med Sci. 2016;46(6):1908-14. [DOI:10.3906/sag-1508-105] [PMID]
26. Poursina F, Sepehrpour S, Mobasherizadeh S. Biofilm formation in nonmultidrug-resistant Escherichia coli isolated from patients with urinary tract infection in Isfahan, Iran. Adv Biomed Res. 2018;7. [DOI:10.4103/abr.abr_116_17] [PMID] [PMCID]
27. Boroumand M, Sharifi A, Manzouri L, Khoramrooz SS, Khosravani SA. Evaluation of pap and sfa genes relative frequency P and S fimbriae encoding of uropathogenic Escherichia coli isolated from hospitals and medical laboratories; Yasuj City, Southwest Iran.
28. Iran Red Crescent Med J. 2019;21(8) :1-8.
29. Zamani H, Salehzadeh A. Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes. Turk J Med Sci. 2018;48(1):162-7. [DOI:10.3906/sag-1707-3] [PMID]
30. Mittal S, Sharma M, Chaudhary U. Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog Glob Health. 2015;109(1):26-9. [DOI:10.1179/2047773215Y.0000000001] [PMID] [PMCID]
31. Ponnusamy P, Natarajan V, Sevanan M. In vitro biofilm formation by uropathogenic Escherichia coli and their antimicrobial susceptibility pattern. Asian Pac J Trop Med. 2012;5(3):210-3. [DOI:10.1016/S1995-7645(12)60026-1]
32. Ren D, Zuo R, Barrios AFG, Bedzyk LA, Eldridge GR, Pasmore ME, et al. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol. 2005;71(7):4022-34. [DOI:10.1128/AEM.71.7.4022-4034.2005] [PMID] [PMCID]
33. Oliveira F, Paludo K, Arend L, Farah S, Pedrosa F, Souza E, et al. Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains. Genet Mol Res. 2011;10(4):4114-25. [DOI:10.4238/2011.October.31.5] [PMID]
34. Choi C, Kwon D, Chae C. Prevalence of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene and its relationship with fimbrial and enterotoxin genes in E. coli isolated from diarrheic piglets. J Vet Diagn Invest. 2001;13(1):26-9. [DOI:10.1177/104063870101300106] [PMID]
35. Sasso MD, Culici M, Braga PC, Guffanti EE, Mucci M. Thymol: inhibitory activity on Escherichia coli and Staphylococcus aureus adhesion to human vaginal cells. JEOR. 2006;18(4):455-61. [DOI:10.1080/10412905.2006.9699140]
36. Neupane S, Pant ND, Khatiwada S, Chaudhary R, Banjara MR. Correlation between biofilm formation and resistance toward different commonly used antibiotics along with extended spectrum beta lactamase production in uropathogenic Escherichia coli isolated from the patients suspected of urinary tract infections visiting Shree Birendra Hospital, Chhauni, Kathmandu, Nepal. Antimicrob Resist Infect Control. 2016;5(1):5. [DOI:10.1186/s13756-016-0104-9] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb