Volume 32, Issue 150 (January & February 2024)                   J Adv Med Biomed Res 2024, 32(150): 9-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

abdollahi N, Hatami H, Shanehbandi D, Shabani M, Sadeghian R. Long-Term Treatment with Buprenorphine Increased TLR1 Receptor Expression in Methamphetamine Rats' Brainstems. J Adv Med Biomed Res 2024; 32 (150) :9-15
URL: http://journal.zums.ac.ir/article-1-7172-en.html
1- Dept. of Animal Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2- Dept. of Animal Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran , homeira.hatami9@gmail.com
3- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
Abstract:   (302 Views)

Background & Objective: Toll-like receptors (TLRs) are proteins that play key roles in inflammation. METH and buprenorphine (BUP) both modulate pain, but the exact mechanism underlying their antinociceptive effects is unknown. As a result, the expression of TLR1 and TLR2 genes was examined in METH rats that had been treated with or without BUP.
Materials & Methods: A total of 77 rats were classified into 11 subtypes (n = 7): control (saline), BUP 6 or 10 mg/kg, METH (10 mg/kg), METH+BUP 6 or 10 mg/kg, or withdrawal groups. The treatments were intraperitoneally administered for 5 or 14 days. RT-PCR evaluated genes expressed in the brain stem area.
Results: The results showed that TLR1 gene expression in the METH group (10 mg/kg; 5 days) considerably improved compared with the control group. Furthermore, BUP injection (10 mg/kg) acutely decreased TLR2 gene expression compared with the METH group. In the METH + BUP (10 mg/kg; 14 days) group, TLR1 expression was higher than in the METH group. The coadministration of METH+BUP (10 mg/kg) acutely decreased TLR2 gene expression compared with METH.
Conclusion: There are limited changes in these genes, and their role in METH consumption and inflammation is unclear. Due to the presence of these two genes in the inflammatory pain and addiction signaling pathways, they may have more clear roles in other parts of the nervous system.

Full-Text [PDF 556 kb]   (146 Downloads)    
Type of Study: Original Article | Subject: Life science
Received: 2023/01/22 | Accepted: 2023/10/21 | Published: 2024/01/30

References
1. Kumar R, Viswanath O, Saadabadi A. Buprenorphine. StatPearls. Treasure Island (FL): Stat Pearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
2. Zoorob R, Kowalchuk A, Mejia de Grubb M. Buprenorphine therapy for opioid use disorder. Am Fam Physic. 2018;97(5):313-20. [DOI:10.1001/jama.2018.7812] [PMID]
3. Kamei J, Saitoh A, Suzuki T, Misawa M, Nagase H, Kasuya Y. Buprenorphine exerts its antinociceptive activity via mu 1-opioid receptors. Life Sci. 1995;56(15):Pl285-90. [DOI:10.1016/0024-3205(95)00078-X] [PMID]
4. Kamei J, Sodeyama M, Tsuda M, Suzuki T, Nagase H. Antinociceptive effect of buprenorphine in mu1-opioid receptor deficient CXBK mice. Life Sci. 1997;60(22):Pl 333-7. [DOI:10.1016/S0024-3205(97)00170-7] [PMID]
5. Kögel B, Christoph T, Strassburger W, Friderichs E. Interaction of mu-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Europ J Pain (London, England). 2005;9(5):599-611. [DOI:10.1016/j.ejpain.2005.02.002] [PMID]
6. Sameer AS, Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. 2021;2021:1157023. [DOI:10.1155/2021/1157023] [PMID] []
7. Nie L, Cai SY, Shao JZ, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol. 2018;9:1523. [DOI:10.3389/fimmu.2018.01523] [PMID] []
8. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 2010;11(5):373-84. [DOI:10.1038/ni.1863] [PMID]
9. El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: an overview. Bullet Nat Res Centre. 2019;43(1):187. [DOI:10.1186/s42269-019-0227-2]
10. Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010;2010:240365. [DOI:10.1155/2010/240365] [PMID] []
11. Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci. 2019;69(2):409-19. [DOI:10.1007/s12576-019-00660-1] [PMID] []
12. Roshani S, Hatami Nemati H, Sadeghian R, Khoshsirat HA. Short- and long-term administration of buprenorphine improved gene expression of P(2)X(4) and GABAA receptors in the hippocampus of methamphetamine rats. Heliyon. 2022;8(11):e11432. [DOI:10.1016/j.heliyon.2022.e11432] [PMID] []
13. Kholghi A, Hatami H, Khajehnasiri N, Sadeghian R. Intraperitoneal injection of buprenorphine on anxiety-like behavior and alteration in expression of Gfap and Nrf2 in methamphetamine treated rats. Vet Res Forum. 2022;13(3):417-22.
14. Sadeghian R, Shahidi S, Komaki A, et al. Synergism effect of swimming exercise and genistein on the inflammation, oxidative stress, and VEGF expression in the retina of diabetic-ovariectomized rats. Life Sci. 2021;284:119931. [DOI:10.1016/j.lfs.2021.119931] [PMID]
15. Khajehnasiri N, Dehkordi MB, Amini-Khoei H, Mohammadabadi MSM, Sadeghian R. Effect of exercise intensity and duration on the levels of stress hormones and hypothalamic-pituitary-gonadal axis in adult male rats: an experimental study. Hormones (Athens). 2021;20(3):483-90. [DOI:10.1007/s42000-021-00303-4] [PMID]
16. Krawczyk-Michalak K, Glapiński A, Brzezińska-Błaszczyk E. Toll-like receptors and their role in regulation of the inflammatory response in sepsis. Anestezjol Intens Ter. 2008;40(4):253-9.
17. Du SH, Qiao DF, Chen CX, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. Front Mol Neurosci. 2017;10:409. [DOI:10.3389/fnmol.2017.00409] [PMID] []
18. Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases. Brain Behav Immun. 2022;102:163-78. [DOI:10.1016/j.bbi.2022.02.016] [PMID]
19. Frank MG, Weber MD, Watkins LR, Maier SF. Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav Immun. 2015;48:1-7. [DOI:10.1016/j.bbi.2015.03.010] [PMID] []
20. Crews FT, Vetreno RP. Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol. 2014;118:315-57. [DOI:10.1016/B978-0-12-801284-0.00010-5] [PMID] []
21. Northcutt AL, Hutchinson MR, Wang X, et al. DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Molec Psychiatr. 2015;20(12):1525-37. [DOI:10.1038/mp.2014.177] [PMID] []
22. Crews FT, Walter TJ, Coleman LG, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl). 2017;234(9-10):1483-98. [DOI:10.1007/s00213-017-4560-6] [PMID] []
23. Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009;93(3):237-47. [DOI:10.1016/j.pbb.2009.04.018] [PMID] []
24. Vetreno RP, Crews FT. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neurosci. 2012;226:475-88. [DOI:10.1016/j.neuroscience.2012.08.046] [PMID] []
25. Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Therap. 2018;184:145-58. [DOI:10.1016/j.pharmthera.2017.10.006] [PMID] []
26. Fan J, Frey RS, Malik AB. TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest. 2003;112(8):1234-43. [DOI:10.1172/JCI18696] [PMID] []
27. Stokes JA, Corr M, Yaksh TL. Spinal toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNβ. PAIN®. 2013;154(5):733-42. [DOI:10.1016/j.pain.2013.01.012] [PMID] []
28. Fernandez-Lizarbe S, Montesinos J, Guerri C. Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J Neurochem.
29. Rendon JL, Janda BA, Bianco ME, Choudhry MA. Ethanol exposure suppresses bone marrow-derived dendritic cell inflammatory responses independent of TLR4 expression. J Interferon Cytokine Res.2012;32(9):416-25. [DOI:10.1089/jir.2012.0005] [PMID] []
30. Wang X, Northcutt AL, Cochran TA, et al. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem Neurosci. 2019;10(8):3622-34. [DOI:10.1021/acschemneuro.9b00225] [PMID] []
31. Zhu R, Bu Q, Fu D, et al. Toll-like receptor 3 modulates the behavioral effects of cocaine in mice. J Neuroinflammation. 2018;15(1):93. [DOI:10.1186/s12974-018-1130-8] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb