1. Luciano B, Allan SJ. Troponin: the biomarker of choice for the detection of cardiac injury. Can Med Assoc J. 2005;173(10):1191. [
DOI:10.1503/cmaj/051291]
2. Ottani F, Galvani M, Nicolini FA, Ferrini D, Pozzati A, Di Pasquale G, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J. 2000;140(6):917-27. [
DOI:10.1067/mhj.2000.111107] [
PMID]
3. Kemp M, Donovan J, Higham H, Hooper J. Biochemical markers of myocardial injury. Br J Anaesth. 2004;93(1):63-73. [
DOI:10.1093/bja/aeh148] [
PMID]
4. Antman E, Bassand J-P, Klein W, Ohman M, Lopez Sendon JL, Rydén L, et al. Myocardial infarction redefined-a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction: the Joint European Society of Cardiology/American College of Cardiology Committee. Journal of the American College of Cardiology. 2000;36(3):959-69. [
DOI:10.1016/S0735-1097(00)00804-4] [
PMID]
5. Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker: Nano-aptasensors approaches. J Pharm Biomed Anal. 2022;211:114624. [
DOI:10.1016/j.jpba.2022.114624] [
PMID]
6. Collinson PO, Stubbs PJ, Kessler AC. Multicentre evaluation of the diagnostic value of cardiac troponin T, CK-MB mass, and myoglobin for assessing patients with suspected acute coronary syndromes in routine clinical practice. Heart. 2003;89(3):280. [
DOI:10.1136/heart.89.3.280] [
PMID] [
PMCID]
7. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ. 2000;321(7255):199. [
DOI:10.1136/bmj.321.7255.199] [
PMID] [
PMCID]
8. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women. N Engl J Med. 2000;342(12):836-43. [
DOI:10.1056/NEJM200003233421202] [
PMID]
9. Ridker Paul M. C-Reactive Protein and the Prediction of Cardiovascular Events Among Those at Intermediate Risk. J Am Coll Cardiol. 2007;49(21):2129-38. [
DOI:10.1016/j.jacc.2007.02.052] [
PMID]
10. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events. N Engl J Med. 2002;347(20):1557-65. [
DOI:10.1056/NEJMoa021993] [
PMID]
11. Shah PK. Circulating markers of inflammation for vascular risk prediction: are they ready for prime time. Am Heart Assoc; 2000. p. 1758-9. [
DOI:10.1161/01.CIR.101.15.1758] [
PMID]
12. Bertinchant JP, Polge A. [Diagnostic and prognostic value of heart-type fatty acid-binding protein (H-FABP), an early biochemical marker of myocardial injury]. Arch Mal Coeur Vaiss. 2005;98(12):1225-31.
13. Yang L, Liu Y, Wang S, Liu T, Cong H. Association between Lp-PLA2 and coronary heart disease in Chinese patients. J Int Med Res. 2017;45(1):159-69. [
DOI:10.1177/0300060516678145] [
PMID] [
PMCID]
14. Epps KC, Wilensky RL. Lp-PLA2- a novel risk factor for high-risk coronary and carotid artery disease. J Intern Med. 2011;269(1):94-106. [
DOI:10.1111/j.1365-2796.2010.02297.x] [
PMID]
15. Arneth B. High-Sensitivity Procalcitonin (hs-PCT): A Marker for Identification of Arteriosclerosis and Myocardial Infarction? Lab Med. 2008;39(10):607-10. [
DOI:10.1309/LM6E5BJZ2TQSCGHZ]
16. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2004:1-38. [
DOI:10.1007/s10254-003-0012-2] [
PMID]
17. Tedgui A, Mallat Z. Cytokines in Atherosclerosis: Pathogenic and Regulatory Pathways. Physiol Rev. 2006;86(2):515-81. [
DOI:10.1152/physrev.00024.2005] [
PMID]
18. Harker JA, Lewis GM, Mack L, Zuniga EI. Late Interleukin-6 Escalates T Follicular Helper Cell Responses and Controls a Chronic Viral Infection. Science. 2011;334(6057):825-9. [
DOI:10.1126/science.1208421] [
PMID] [
PMCID]
19. Woo J, Lacbawan FL, Sunheimer R, Lefever D, McCabe JB. Is Myoglobin Useful in the Diagnosis of Acute Myocardial Infarction in the Emergency Department Setting? Am J Clin Pathol. 1995;103(6):725-9. [
DOI:10.1093/ajcp/103.6.725] [
PMID]
20. Kleine AH, Glatz JFC, Van Nieuwenhoven FA, Van der Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Lipid Metabolism in the Healthy and Disease Heart1992. p. 155-62. [
DOI:10.1007/978-1-4615-3514-0_22]
21. Ishii J, Wang J-h, Naruse H, Taga S, Kinoshita M, Kurokawa H, et al. Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem. 1997;43(8):1372-8. [
DOI:10.1093/clinchem/43.8.1372] [
PMID]
22. Ecollan P, Collet J-P, Boon G, Tanguy M-L, Fievet M-L, Haas R, et al. Pre-hospital detection of acute myocardial infarction with ultra-rapid human fatty acid-binding protein (H-FABP) immunoassay. Int J Cardiol. 2007;119(3):349-54. [
DOI:10.1016/j.ijcard.2006.09.003] [
PMID]
23. Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397-408. [
DOI:10.1016/j.jacc.2013.05.016] [
PMID]
24. Bielas H, Meister-Langraf RE, Schmid J-P, Barth J, Znoj H, Schnyder U, et al. C-reactive protein as a predictor of posttraumatic stress induced by acute myocardial infarction. Gen Hosp Psychiatry. 2018;53:125-30. [
DOI:10.1016/j.genhosppsych.2018.03.008] [
PMID]
25. Best LG, Zhang Y, Lee ET, Yeh J-L, Cowan L, Palmieri V, et al. C-Reactive Protein as a Predictor of Cardiovascular Risk in a Population With a High Prevalence of Diabetes. Circulation. 2005;112(9):1289-95. [
DOI:10.1161/CIRCULATIONAHA.104.489260] [
PMID]
26. Liu N, Liu J, Ji Y, Lu P, Wang C, Guo F. C-Reactive Protein Induces TNF-α Secretion by p38 MAPK-TLR4 Signal Pathway in Rat Vascular Smooth Muscle Cells. Inflammation. 2011;34(4):283-90. [
DOI:10.1007/s10753-010-9234-z] [
PMID]
27. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood. 1993;82(2):513-20.
https://doi.org/10.1182/blood.V82.2.513.513 [
DOI:10.1182/blood.V82.2.513.bloodjournal822513] [
PMID]
28. Devaraj S, Kumaresan PR, Jialal I. Effect of C-reactive protein on chemokine expression in human aortic endothelial cells. J Mol Cell Cardiol. 2004;36(3):405-10. [
DOI:10.1016/j.yjmcc.2003.12.005] [
PMID]
29. Sun S, Wang F, Yu M, Kang J. Clinical study of serum procalcitonin level in patients with myocardial infarction complicated by pulmonary infection. Exp Ther Med. 2018;16(6):5210-4. [
DOI:10.3892/etm.2018.6841] [
PMID] [
PMCID]
30. Macphee CH, Nelson J, Zalewski A. Role of lipoprotein-associated phospholipase A2 in atherosclerosis and its potential as a therapeutic target. Curr Opin Pharmacol. 2006;6(2):154-61. [
DOI:10.1016/j.coph.2005.11.008] [
PMID]
31. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(5):923-31. [
DOI:10.1161/01.ATV.0000160551.21962.a7] [
PMID]
32. O'Donoghue ML, Braunwald E, White HD, Steen DL, Lukas MA, Tarka E, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama. 2014;312(10):1006-15. [
DOI:10.1001/jama.2014.11061] [
PMID]
33. Ueshima H, Kadowaki T, Hisamatsu T, Fujiyoshi A, Miura K, Ohkubo T, et al. Lipoprotein-associated phospholipase A2 is related to risk of subclinical atherosclerosis but is not supported by Mendelian randomization analysis in a general Japanese population. Atherosclerosis. 2016;246:141-7. [
DOI:10.1016/j.atherosclerosis.2015.12.027] [
PMID]
34. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22-7. [
DOI:10.1016/j.jjcc.2018.05.010] [
PMID]
35. Tøllefsen IM, Shetelig C, Seljeflot I, Eritsland J, Hoffmann P, Andersen GØ. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart. 2021;8(2):e001869. [
DOI:10.1136/openhrt-2021-001869] [
PMID] [
PMCID]
36. Anderson DR, Poterucha JT, Mikuls TR, Duryee MJ, Garvin RP, Klassen LW, et al. IL-6 and its receptors in coronary artery disease and acute myocardial infarction. Cytokine. 2013;62(3):395-400. [
DOI:10.1016/j.cyto.2013.03.020] [
PMID]
37. Su J-H, Luo M-Y, Liang N, Gong S-X, Chen W, Huang W-Q, et al. Interleukin-6: a novel target for cardio-cerebrovascular diseases. Front Pharmacol. 2021;12:745061. [
DOI:10.3389/fphar.2021.745061] [
PMID] [
PMCID]
38. Schuett H, Luchtefeld M, Grothusen C, Grote K, Schieffer B. How much is too much? Interleukin-6 and its signalling in atherosclerosis. J Thromb Haemost. 2009;102(08):215-22. [
DOI:10.1160/TH09-05-0297] [
PMID]
39. Suzuki H, Kusuyama T, Sato R, Yokota Y, Tsunoda F, Sato T, et al. Elevation of matrix metalloproteinases and interleukin‐6 in the culprit coronary artery of myocardial infarction. Eur J Clin Invest. 2008;38(3):166-73. [
DOI:10.1111/j.1365-2362.2007.01919.x] [
PMID]
40. Madan M, Bishayi B, Hoge M, Amar S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis. 2008;197(2):504-14. [
DOI:10.1016/j.atherosclerosis.2007.02.023] [
PMID] [
PMCID]
41. Müller J, Gorressen S, Grandoch M, Feldmann K, Kretschmer I, Lehr S, et al. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol. 2014;109(6):440. [
DOI:10.1007/s00395-014-0440-y] [
PMID]
42. Fernández-Ruiz I. Early inhibition of IL-6 signalling after an acute MI improves myocardial salvage. Nat Rev Cardiol. 2021;18(7):460-. [
DOI:10.1038/s41569-021-00560-1] [
PMID]
43. Broch K, Anstensrud Anne K, Woxholt S, Sharma K, Tøllefsen Ingvild M, Bendz B, et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients With Acute ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2021;77(15):1845-55. [
DOI:10.1016/j.jacc.2021.02.049] [
PMID]
44. Gang H, Peng D, Hu Y, Tang S, Li S, Huang Q. Interleukin‐9‐secreting CD4+ T cells regulate CD8+ T cells cytotoxicity in patients with acute coronary syndromes. Apmis. 2021;129(2):91-102. [
DOI:10.1111/apm.13094] [
PMID]
45. Gregersen I, Skjelland M, Holm S, Holven KB, Krogh-Sørensen K, Russell D, et al. Increased systemic and local interleukin 9 levels in patients with carotid and coronary atherosclerosis. PLoS One. 2013;8(8):e72769. [
DOI:10.1371/journal.pone.0072769] [
PMID] [
PMCID]
46. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. The Lancet. 2017;390(10105):1833-42. [
DOI:10.1016/S0140-6736(17)32247-X] [
PMID]
47. Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, et al. Effects of Interleukin-1β Inhibition With Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen. Circulation. 2012;126(23):2739-48. [
DOI:10.1161/CIRCULATIONAHA.112.122556] [
PMID]
48. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597-605. [
DOI:10.1016/j.ahj.2011.06.012] [
PMID]
49. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-31. [
DOI:10.1056/NEJMoa1707914] [
PMID]
50. Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, Janowska J, Szulc A, Jastrzebska-Maj E, et al. Serum tumour necrosis factor-α, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Coron Artery Dis. 2003;14(6):431-8. [
DOI:10.1097/00019501-200309000-00003] [
PMID]
51. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-α and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101(18):2149-53. [
DOI:10.1161/01.CIR.101.18.2149] [
PMID]
52. Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL, et al. Risk Factor Analysis of Plasma Cytokines in Patients With Coronary Artery Disease by a Multiplexed Fluorescent Immunoassay. Am J Clin Pathol. 2006;125(6):906-13. [
DOI:10.1309/Q3E6KF0QD3U3YL6T] [
PMID]
53. Tian M, Yuan Y-C, Li J-Y, Gionfriddo MR, Huang R-C. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Dis Transl Med. 2015;1(1):18-26. [
DOI:10.1016/j.cdtm.2015.02.002] [
PMID] [
PMCID]
54. Sack MN. Tumor necrosis factor-α in cardiovascular biology and the potential role for anti-tumor necrosis factor-α therapy in heart disease. Pharmacol Ther. 2002;94(1):123-35. [
DOI:10.1016/S0163-7258(02)00176-6] [
PMID]
55. Wang X, Guo Z, Ding Z, Mehta JL. Inflammation, Autophagy, and Apoptosis After Myocardial Infarction. J Am Heart Assoc. 2023;7(9):e008024. [
DOI:10.1161/JAHA.117.008024] [
PMID] [
PMCID]
56. Mahmoud AH, Taha NM, Zakhary M, Tadros MS. PTEN gene & TNF-alpha in acute myocardial infarction. IJC Heart & Vasculature. 2019;23:100366. [
DOI:10.1016/j.ijcha.2019.100366] [
PMID] [
PMCID]