Volume 33, Issue 156 (January & February 2025)                   J Adv Med Biomed Res 2025, 33(156): 11-17 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mansouri M, Azizi R, Namiranian N, Afkhami Ardekani M. Impact of Copper/Zinc Ratio in Diabetic Retinopathy and Nephropathy: A Cross-Sectional Study. J Adv Med Biomed Res 2025; 33 (156) :11-17
URL: http://journal.zums.ac.ir/article-1-7487-en.html
1- Endocrinology and Metabolism Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
2- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , ijdo2009@gmail.com
Abstract:   (192 Views)

Background & Aims: Understanding copper/zinc (Cu/Zn) ratio's influence on diabetic complications could lead to more targeted therapeutic interventions, and preventive measures. This study compared serum Zn, Cu, and Cu/Zn ratios among T2DM individuals with and without retinopathy and nephropathy.
Methods: In this cross-sectional study, the individuals with T2DM participated between 2021 and 2022 at the Yazd Diabetes Research Center. A control group consisted of 30 people with T2DM without microvascular problems, whereas 30 people with diabetic retinopathy (DR) and 30 people with diabetic nephropathy (DN) were recruited.. Blood samples were analyzed for Zn and Cu levels. Statistical analysis was conducted with SPSS, utilizing Pearson correlation and ANOVA. Statistical significance was established with a p-value of ≤ 0.05.
Results: 41.76% of men and 58.24% of women were included in this study. No significant differences were found in terms of age. (P=0.128), BMI (P=0.210), and gender (P=0.057). Results revealed lower Zn levels in the patients with DR compared to T2DM (P=0.033). Cu/Zn ratio in the DR was higher than in the other groups (P=0.046). Cu/Zn ratio correlated positively with HbA1c (P=0.001, r=0.321). Furthermore, negative correlations were observed between the duration of diabetes, and Zn levels (r=-0.195, P=0.05), and between the Cu/Zn ratio and glomerular filtration rate (GFR) levels (r=-0.182, P=0.05).
Conclusion: The research identified correlations between HbA1c and GFR levels and the Cu/Zn ratio, indicating a potential relationship between trace element imbalances and the progression of diabetes. Thus, Zn levels decreased and Cu/Zn ratio increased across the DR group compared to the control.

Full-Text [PDF 409 kb]   (45 Downloads) |   |   Full-Text (HTML)  (13 Views)  
Type of Study: Original Research Article | Subject: Clinical Medicine
Received: 2024/11/11 | Accepted: 2025/03/6 | Published: 2025/03/13

References
1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. [DOI:10.1016/j.diabres.2019.107843] [PMID]
2. Mehrabbeik A, Azizi R, Rahmanian M, Namiranian N, Shukohifar M, Asi M. Design and Psychometrics of Diabetes Knowledge Questionnaire. J Med Educ. 2022;21(1):e130597. [DOI:10.5812/jme-130597]
3. Uwaezuoke SN. The role of novel biomarkers in predicting diabetic nephropathy: A review. Int J Nephrol Renov Dis. 2017;10:221-31. [DOI:10.2147/IJNRD.S143186] [PMID] [PMCID]
4. Bekele BB. The prevalence of macro and microvascular complications of DM among patients in Ethiopia 1990–2017: Systematic review. Diabetes & Metabolic Syndrome: Clin Res Rev. 2019;13(1):672-7. [DOI:10.1016/j.dsx.2018.11.046] [PMID]
5. Injinari N, Ghoshouni H, Mehrabbeik A, Namiranian N, Ghadiri-Anari A, Azizi R. Comparison of Diabetic Ketoacidosis Characteristics During-and Before the COVID-19 Pandemic. Int J Endocrinol Metab. 2023;21(3):e134882. [DOI:10.5812/ijem-134882] [PMID] [PMCID]
6. Entezari Z, Injinari N, Vakili M, Namiranian N. Identification of Factors Related to Sexual Dysfunction in Type 2 Diabetic Women. Iran J Diabetes Obes. 2023;15(2):1-7. [DOI:10.18502/ijdo.v15i2.12963]
7. Schmidt S, Andersen Nexø M, Norgaard O, Willaing I, Pedersen‐Bjergaard U, Skinner TC, et al. Psychosocial factors associated with HbA1c in adults with insulin pump‐treated type 1 diabetes: a systematic review. Diabet Med. 2020;37(9):1454-62. [DOI:10.1111/dme.14347] [PMID]
8. Mehrabbeik A, Namiranian N, Azizi R, Meybody MA, Shariati M, Kohani HA. Investigation of Association Between Insulin Injection Technique and Blood Glucose Control in Patients with Type 2 Diabetes. Int J Endocrinol Metab. 2022;20(4):e128392. [DOI:10.5812/ijem-128392] [PMID] [PMCID]
9. Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013;36(4):1047-55. [DOI:10.2337/dc12-1805] [PMID] [PMCID]
10. Kommoju UJ, Reddy BM. Genetic etiology of type 2 diabetes mellitus: a review. Int J Diabetes Dev Ctries. 2011;31:51-64. [DOI:10.1007/s13410-011-0020-8]
11. Cruz KJ, de Oliveira AR, do Nascimento Marreiro D. Antioxidant role of zinc in diabetes mellitus. World J Diabetes. 2015;6(2):333. [DOI:10.4239/wjd.v6.i2.333] [PMID] [PMCID]
12. Dascalu A, Anghelache A, Stana D, Costea A, Nicolae V, Tanasescu D, et al. Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med. 2022;23(5):1-6. [DOI:10.3892/etm.2022.11253] [PMID] [PMCID]
13. Bjørklund G, Dadar M, Pivina L, Doşa MD, Semenova Y, Aaseth J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr Med Chem. 2019;27(39):6643-57. [DOI:10.2174/0929867326666190902122155] [PMID]
14. Martins MD, Oliveira AS, de Carvalho VB, Rodrigues LA, Arcanjo DD, Dos Santos MA, et al. Effects of zinc supplementation on glycemic control and oxidative stress in experimental diabetes: A systematic review. Clin Nutr ESPEN. 2022;51:28-36. [DOI:10.1016/j.clnesp.2022.08.003] [PMID]
15. Farooq DM, Alamri AF, Alwhahabi BK, Metwally AM, Kareem KA. The status of zinc in type 2 diabetic patients and its association with glycemic control. J Fam Community Med. 2020;27(1):29-36. [DOI:10.4103/jfcm.JFCM_113_19] [PMID] [PMCID]
16. Farooq DM, Alamri AF, Alwhahabi BK, Metwally AM, Kareem KA. The status of zinc in type 2 diabetic patients and its association with glycemic control. J Fam Community Med. 2020;27(1):29-36. [DOI:10.1016/j.phrs.2020.104744] [PMID]
17. Barman S, Pradeep SR, Srinivasan K. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats. J Nutr Biochem. 2018;54:113-29. [DOI:10.1016/j.jnutbio.2017.11.008] [PMID]
18. Khan MI, Siddique KU, Ashfaq F, Ali W, Reddy HD, Mishra A. Effect of high-dose zinc supplementation with oral hypoglycemic agents on glycemic control and inflammation in type-2 diabetic nephropathy patients. J Nat Sci Biol Med. 2013;4(2):336. [DOI:10.4103/0976-9668.117002] [PMID] [PMCID]
19. Zhang X, Liang D, Lian X, Chi ZH, Wang X, Zhao Y, et al. Effect of zinc deficiency on mouse renal interstitial fibrosis in diabetic nephropathy. Mol Med Rep. 2016;14(6):5245-52. [DOI:10.3892/mmr.2016.5870] [PMID]
20. Gembillo G, Visconti L, Giuffrida AE, Labbozzetta V, Peritore L, Lipari A, et al. Role of zinc in diabetic kidney disease. Nutrients. 2022;14(7):1353. [DOI:10.3390/nu14071353] [PMID] [PMCID]
21. Chang W, Li P. Copper and diabetes: current research and prospect. Mol Nutr Food Res. 2023;67(23):2300468. [DOI:10.1002/mnfr.202300468] [PMID]
22. Gembillo G, Labbozzetta V, Giuffrida AE, Peritore L, Calabrese V, Spinella C, et al. Potential role of copper in diabetes and diabetic kidney disease. Metabolites. 2022;13(1):17. [DOI:10.3390/metabo13010017] [PMID] [PMCID]
23. Takao T, Yanagisawa H, Suka M, Yoshida Y, Onishi Y, Tahara T, et al. Synergistic association of the copper/zinc ratio under inflammatory conditions with diabetic kidney disease in patients with type 2 diabetes: The Asahi Diabetes Complications Study. J Diabetes Investig. 2022;13(2):299-307. [DOI:10.1111/jdi.13659] [PMID] [PMCID]
24. Saifi MA, Godugu C. Copper chelation therapy inhibits renal fibrosis by modulating copper transport proteins. BioFactors. 2022;48(4):934-45. [DOI:10.1002/biof.1837] [PMID]
25. Dhivya MA, Sulochana KN, Devi SB. High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell Signal. 2022;92:110244. [DOI:10.1016/j.cellsig.2022.110244] [PMID]
26. Zhao G, Sun H, Zhang T, Liu JX. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal. 2020;18:1-4. [DOI:10.1186/s12964-020-00548-3] [PMID] [PMCID]
27. Tabatabaei-Malazy O, Peimani M, Mohseni S, Nikfar S, Abdollahi M, Larijani B. Therapeutic effects of dietary antioxidative supplements on the management of type 2 diabetes and its complications; umbrella review of observational/trials meta-analysis studies. J Diabetes Metab Disord. 2022;21(2):1833-59. [DOI:10.1007/s40200-022-01069-1] [PMID] [PMCID]
28. Asadollahi S, Hadizadeh M, Namiranian N, Kalantar SM, Firoozabadi AD, Injinari N. Misexpression of LINC01410, FOSL1, and MAFB in peripheral blood mononuclear cells associated with diabetic nephropathy. Gene. 2023;862:147265. [DOI:10.1016/j.gene.2023.147265] [PMID]
29. Takao T, Yanagisawa H, Suka M, Yoshida Y, Onishi Y, Tahara T, et al. Synergistic association of the copper/zinc ratio under inflammatory conditions with diabetic kidney disease in patients with type 2 diabetes: The Asahi Diabetes Complications Study. J Diabetes Investig. 2022;13(2):299-307. [DOI:10.1111/jdi.13659] [PMID] [PMCID]
30. Luo YY, Zhao J, Han XY, Zhou XH, Wu J, Ji LN. Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes. Chin Med J. 2015;128(24):3276-82. [DOI:10.4103/0366-6999.171357] [PMID] [PMCID]
31. Mor P, Rathore AK, Sonagra V, Sharma N, Sharma A. A study of serum copper, zinc and magnesium in type 2 diabetes mellitus with complications and without complications. Biomed Pharmacol J. 2020;13(4):1927-30. [DOI:10.13005/bpj/2070]
32. Abu Zaid WK, Ramadan IG, Shawky TA, Shaheen MA. Zinc and Copper status among Egyptian Type 2 Diabetics and their relationship to glycemic control and micro vascular complications. Al-Azhar Intern Med J. 2022;3(11):110-3.
33. Ito S, Fujita H, Narita T, Yaginuma T, Kawarada Y, Kawagoe M, et al. Urinary copper excretion in type 2 diabetic patients with nephropathy. Nephron. 2001;88(4):307-12. [DOI:10.1159/000046013] [PMID]
34. Eaton JW, Qian M. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Mol Cell Biochem. 2002;234:135-42. [DOI:10.1007/978-1-4615-1087-1_15]
35. Argirova MD, Ortwerth BJ. Activation of protein-bound copper ions during early glycation: study on two proteins. Arch Biochem Biophys. 2003;420(1):176-84. [DOI:10.1016/j.abb.2003.09.005] [PMID]
36. Atari-Hajipirloo S, Valizadeh N, Khadem-Ansari MH, Rasmi Y, Kheradmand F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int J Endocrinol Metab. 2016;14(2):e33273. [DOI:10.5812/ijem.33273] [PMID] [PMCID]
37. Altoum AE, Osman AL, Babker AM. Correlation of oxidative stress markers malondialdehyde (MDA), antioxidant vitamins A, E, and C with glycated hemoglobin (HBA1C) levels in Type 2 diabetes mellitus. Asian J Pharm Clin Res. 2018;11(5):281-3. [DOI:10.22159/ajpcr.2018.v11i5.24548]
38. Hamasaki H, Kawashima Y, Yanai H. Serum Zn/Cu ratio is associated with renal function, glycemic control, and metabolic parameters in Japanese patients with and without type 2 diabetes: a cross-sectional study. Front Endocrinol. 2016;7:147. [DOI:10.3389/fendo.2016.00147] [PMID] [PMCID]
39. Guo CH, Chen PC, Yeh MS, Hsiung DY, Wang CL. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem. 2011;44(4):275-80. [DOI:10.1016/j.clinbiochem.2010.12.017] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb