Volume 32, Issue 154 (September & October 2024)                   J Adv Med Biomed Res 2024, 32(154): 378-385 | Back to browse issues page

Ethics code: ZUMS.REC.1393.99


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ganjkhani M, Marahem M. Prophylactic Effect of Melatonin on Action Potential Modulation in Snail Neurons: A Study in a Pentylentetrazol-Induced Epileptic Model. J Adv Med Biomed Res 2024; 32 (154) :378-385
URL: http://journal.zums.ac.ir/article-1-7579-en.html
1- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , mganjkhani@zums.ac.ir
2- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
Abstract:   (282 Views)
Background & Objective:  There is considerable evidence in the field of epilepsy research suggesting that melatonin may have a potential therapeutic role in the treatment of epilepsy. Investigating the effects of melatonin on neuronal electrical activity may provide valuable insight into the development of adjunctive therapies in this context. We aimed to investigate the prophylactic properties of melatonin using the intracellular recording technique in an epilepsy model of snail neurons, which exhibit epileptic behavior similar to that in human neurons.
 Materials & Methods: To study the impact of melatonin (100 µM) on firing pattern and action potential (AP) configuration in an epileptic condition, the current clamp technique was used on Helix aspersa neurons. Recordings were made before and after administering Pentylenetetrazole (PTZ) (25 mM).
Results:  The findings demonstrated that applying melatonin to cells in normal Ringer's solution did not significantly alter the resting membrane potential (RMP) or the amplitude and duration of the AHP and AP. However, a significant decline in frequency was evident (P<0.05).  Application of melatonin after PTZ significantly decreased the firing frequency of APs while concurrently enhancing the amplitude of AHP, which had been reduced by PTZ, and hyperpolarizing the RMP.   
Conclusion: Our study demonstrates that melatonin has protective effects against some of the adverse impacts of PTZ on neuronal firing patterns in Helix aspersa neurons. These findings suggest that melatonin may play a crucial role in modulating neuronal excitability, which is important in epilepsy.
 
Full-Text [PDF 538 kb]   (121 Downloads)    
Type of Study: Original Research Article | Subject: Health Improvement Strategies
Received: 2024/10/3 | Accepted: 2024/12/7 | Published: 2024/10/19

References
1. Fisher RS, Boas WVE, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005; 46(4): 470-2. [DOI:10.1111/j.0013-9580.2005.66104.x] [PMID]
2. Beghi E. The epidemiology of epilepsy. Neuroepidemiol. 2020; 54(2): 185-91. [DOI:10.1159/000503831] [PMID]
3. Tchekalarova J, Moyanova S, De Fusco A, Ngomba RT. The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders. BRB. 2015; 119: 80-92. [DOI:10.1016/j.brainresbull.2015.08.006] [PMID]
4. Janahmadi M, Farajnia S, Vatanparast J, Abbasipour H, Kamalinejad M. The fruit essential oil of Pimpinella anisum L.(Umblliferae) induces neuronal hyperexcitability in snail partly through attenuation of after-hyperpolarization. J Ethnopharmacol. 2008; 120(3): 360-5. [DOI:10.1016/j.jep.2008.09.008] [PMID]
5. Sugaya A, SUGAYA E, TSUJITA M. Pentylenetetrazol-induced intracellular potential changes of the neuron of the Japanese land snail Euhadra peliomphala. Jpn J Physiol. 1973; 23(3): 261-74. [DOI:10.2170/jjphysiol.23.261] [PMID]
6. Janahmadi M, Niazi F, Danyali S, Kamalinejad M. Effects of the fruit essential oil of Cuminum cyminum Linn.(Apiaceae) on pentylenetetrazol-induced epileptiform activity in F1 neurones of Helix aspersa. J Ethnopharmacol. 2006; 104(1-2): 278-82. [DOI:10.1016/j.jep.2005.09.019] [PMID]
7. Kerkut GA, Lambert J, Gayton R, Loker JE, Walker RJ. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comparative Biochemistry and Physiology Part A: Physiology. 1975; 50(1): 1-IN11. [DOI:10.1016/S0010-406X(75)80194-0] [PMID]
8. Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, et al. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res. 2021; 70(2): e12699. [DOI:10.1111/jpi.12699] [PMID] [PMCID]
9. Arendt J. Melatonin: countering chaotic time cues. Front Endocrinol 10: 391. 2019. [DOI:10.3389/fendo.2019.00391] [PMID] [PMCID]
10. Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. Naunyn Schmiedebergs Arch Pharmacol 2024; 397(6): 3867-95. [DOI:10.1007/s00210-023-02939-y] [PMID]
11. Abdollahi R, Hosseinmardi N, Janahmadi M. Effect of melatonin on electrophysiological parameters in an epileptic model by pentylenetetrazole. Res Med. 2021; 45(2): 1-5.
12. Banach M, Gurdziel E, Jędrych M, Borowicz KK. Melatonin in experimental seizures and epilepsy. Pharmacol Rep. 2011; 63(1): 1-11. [DOI:10.1016/S1734-1140(11)70393-0] [PMID]
13. Moezi L, Shafaroodi H, Hojati A, Dehpour AR. The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epil Behav. 2011; 22(2): 200-6. [DOI:10.1016/j.yebeh.2011.07.002] [PMID]
14. Choi TY, Kwon JE, Durrance ES, Jo SH, Choi SY, Kim KT. Melatonin inhibits voltage-sensitive Ca2+ channel-mediated neurotransmitter release. Brain Res. 2014; 1557: 34-42. [DOI:10.1016/j.brainres.2014.02.023] [PMID]
15. Nagaeva E, Zubarev I, Korpi ER. Electrophysiological properties of neurons: current-clamp recordings in mouse brain slices and firing-pattern analysis. Bio Protocol. 2021; 11(12): e4061-e. [DOI:10.21769/BioProtoc.4061] [PMID] [PMCID]
16. Ayar A, Martin DJ, Ozcan M, Kelestimur H. Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurones. Neurosci Lett. 2001; 313(1-2): 73-7. [DOI:10.1016/S0304-3940(01)02188-7] [PMID]
17. Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage‐gated sodium, potassium, and calcium channels. J Pineal Res. 2024; 76(1): e12919. [DOI:10.1111/jpi.12919] [PMID]
18. Ganjkhane M, Marahem M, Parizad MA, Beheshtirouy S. The effect of valproate sodium on the electrical activity of helix aspersa F1 neurons in a pentylenetetrazole-induced epileptic model using an intracellular recording system. Arch Neurosci. 2022; 9(1). [DOI:10.5812/ans.106887]
19. Bortolami A, Sesti F. Ion channels in neurodevelopment: lessons from the Integrin-KCNB1 channel complex. Neural Regenerat Res. 2023; 18(11): 2365-9. [DOI:10.4103/1673-5374.371347] [PMID] [PMCID]
20. Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceut. 2010; 3(7): 2090-110. [DOI:10.3390/ph3072090] [PMID] [PMCID]
21. Sharma S, Bhasin J, Aggarwal K, Ahuja A. Nanotechnological advances in the treatment of epilepsy: a comprehensive review. Nanotechnol. 2024.
22. Liu Z, Zhu J, Shen Z, Ling Y, Zeng Y, Yang Y, et al. Melatonin as an add-on treatment for epilepsy: A systematic review and meta-analysis. Seizure: Europ J Epil. 2024. [DOI:10.1016/j.seizure.2024.02.016] [PMID]
23. Mineiro R, Cardoso MR, Duarte AC, Santos C, Cipolla-Neto J, do Amaral FG, et al. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol. 2024; 75: 101158. [DOI:10.1016/j.yfrne.2024.101158] [PMID]
24. Akyuz E, Kullu I, Arulsamy A, Shaikh MF. Melatonin as an antiepileptic molecule: therapeutic implications via neuroprotective and inflammatory mechanisms. ACS Chem Neurosci. 2021; 12(8): 1281-92. [DOI:10.1021/acschemneuro.1c00083] [PMID]
25. Ayar A, Martin DJ, Ozcan M, Kelestimur H. Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurones. Neurosci Lett. 2001; 313(1-2): 73-7. [DOI:10.1016/S0304-3940(01)02188-7] [PMID]
26. Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage‐gated sodium, potassium, and calcium channels. J Pineal Res. 2024; 76(1): e12919. [DOI:10.1111/jpi.12919] [PMID]
27. Huang F, Guan X, Yan Y, Fan W, You Y, He H, et al. Electrophysiological effects of melatonin on rat trigeminal ganglion neurons that participate in nociception in vitro. Eur Rev Med Pharmacol Sci. 2018; 22: 3234-9.
28. Faber E, Sah P, editors. Functions of SK channels in central neurons. Proceed Australian Physiol Soc; 2007. [DOI:10.1111/j.1440-1681.2007.04725.x] [PMID]
29. Duménieu M, Fourcaud‐Trocmé N, Garcia S, Kuczewski N. Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience. Physiol Rep. 2015; 3(5): e12344. [DOI:10.14814/phy2.12344] [PMID] [PMCID]
30. Ghasemi Z, Hassanpour-Ezatti M, Kamalinejad M, Janahmadi M. Functional involvement of Ca²⁺ and Ca²⁺-activated K⁺ channels in anethol-induced changes in Ca²⁺ dependent excitability of F1 neurons in Helix aspersa. Fitoterapia. 2011. [DOI:10.1016/j.fitote.2011.03.007] [PMID]
31. Corotto FS, Michel WC. Mechanisms of afterhyperpolarization in lobster olfactory receptor neurons. J Neurophysiol. 1998; 80(3): 1268-76. [DOI:10.1152/jn.1998.80.3.1268] [PMID]
32. Klee MR, Faber DS, Heiss W-D. Strychnine-and pentylenetetrazol-induced changes of excitability in Aplysia neurons. Sci. 1973; 179(4078): 1133-6. [DOI:10.1126/science.179.4078.1133] [PMID]
33. Xu Z, Wu Y, Zhang Y, Zhang H, Shi L. Melatonin activates BKCa channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway. Eur J Pharmacol. 2019; 842: 177-88. [DOI:10.1016/j.ejphar.2018.10.032] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb