دوره 33، شماره 159 - ( 6-1404 )                   جلد 33 شماره 159 صفحات 327-319 | برگشت به فهرست نسخه ها

Ethics code: IR.MUMS.MEDICAL.REC.1403.036

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami F S, Safipour Afshar A, Sadeghi Zarghari S, Mazhari A, Siyadat P, Sheikhi M, et al . EZH2 Expression and SOCS1 Gene Methylation in Acute Myeloid Leukemia: Unraveling Epigenetic Interactions and Clinical Implications. J Adv Med Biomed Res 2025; 33 (159) :319-327
URL: http://journal.zums.ac.ir/article-1-7720-fa.html
EZH2 Expression and SOCS1 Gene Methylation in Acute Myeloid Leukemia: Unraveling Epigenetic Interactions and Clinical Implications. Journal of Advances in Medical and Biomedical Research. 1404; 33 (159) :319-327

URL: http://journal.zums.ac.ir/article-1-7720-fa.html


چکیده:   (203 مشاهده)

Background & Objective: Acute myeloid leukemia (AML) is a diverse blood cancer that predominantly affects adults. In addition to genetic mutations, epigenetic processes, including DNA methylation and histone modifications are key factors in leukemogenesis. This study investigated the relationship between the Suppressor of Cytokine Signaling 1 (SOCS1) gene methylation and the Enhancer of Zeste Homolog 2 (EZH2) gene expression in patients with AML.
Materials & Methods: This cross-sectional study included 85 AML patients admitted to Ghaem Hospital (Mashhad, Iran) between April 2017 and March 2023. Patients were diagnosed based on the World Health Organization (WHO) guidelines and the French-American-British (FAB) classification. The EZH2 expression level and SOCS1 methylation patterns were analyzed. The associations between these epigenetic alterations, demographic characteristics, and clinical outcomes were assessed.
Results: Our findings indicated a significant inverse relationship between EZH2 expression and SOCS1 gene methylation. Furthermore, EZH2 overexpression and SOCS1 hypomethylation were associated with reduced overall survival.
Conclusion: This study suggests that EZH2 and SOCS1 may jointly influence AML progression and patient outcomes through epigenetic changes—their prognostic relevance and therapeutic potential merit further research in larger studies.

     
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Medical Biology
دریافت: 1404/2/5 | پذیرش: 1404/6/18 | انتشار: 1404/7/7

فهرست منابع
1. Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(3):502-26. [DOI:10.1002/ajh.26822] [PMID]
2. Schrezenmeier J, Huntly BJP. Epigenetic dysregulation in acute myeloid leukemia. Semin Hematol. 2025;S0037-1963(25):00028-9. [DOI:10.1053/j.seminhematol.2025.06.003] [PMID]
3. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487-500. [DOI:10.1038/nrg.2016.59] [PMID]
4. Meng Y, Nerlov C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol. 2025;35(3):217-29. [DOI:10.1016/j.tcb.2024.08.005] [PMID] [PMCID]
5. Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp Hematol. 2015;43(8):609-24. [DOI:10.1016/j.exphem.2015.05.009] [PMID]
6. Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules. 2024;14(9):1117. [DOI:10.3390/biom14091117] [PMID] [PMCID]
7. Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. Epigenomes. 2024;8(2):23. [DOI:10.3390/epigenomes8020023] [PMID] [PMCID]
8. Dong Y, Liao H, Huang F, Bao Y, Guo W, Tan Z. Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence. Sci Rep. 2025;15(1):15815. [DOI:10.1038/s41598-025-99258-4] [PMID] [PMCID]
9. Zhang XH, Yang L, Liu XJ, Zhan Y, Pan YX, Wang XZ, et al. Association between methylation of tumor suppressor gene SOCS1 and acute myeloid leukemia. Oncol Rep. 2018;40(2):1008-16. [DOI:10.3892/or.2018.6508] [PMID]
10. Beaurivage C, Champagne A, Tobelaim WS, Pomerleau V, Menendez A, Saucier C. SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine. 2016;82:87-94. [DOI:10.1016/j.cyto.2016.01.005] [PMID]
11. Ludwig CH, Bintu L, Klein A, Treutlein B. Mapping chromatin modifications at the single cell level. Development. 2019;146(12):dev170217. [DOI:10.1242/dev.170217] [PMID] [PMCID]
12. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. [DOI:10.1016/j.cell.2007.02.005] [PMID]
13. Bouligny IM, Maher KR, Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel). 2023;15(13):3292. [DOI:10.3390/cancers15133292] [PMID] [PMCID]
14. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104. [DOI:10.1186/s13045-020-00937-8] [PMID] [PMCID]
15. Hamed NAM, El Ghandour A, Abo Elwafa RA, Rezk MR, Ghallab O. Expression of Enhancer of Zeste Homolog 2 (EZH2) Gene in Acute Myeloid Leukemia. Asian Pac J Cancer Prev. 2023;24(1):81-5. [DOI:10.31557/APJCP.2023.24.1.81] [PMID] [PMCID]
16. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128-34. [DOI:10.1038/nm.4036] [PMID] [PMCID]
17. Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol. 2023;40(6):167. [DOI:10.1007/s12032-023-02025-6] [PMID] [PMCID]
18. Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37(3):300-5. [DOI:10.1002/gcc.10222] [PMID]
19. Kühn MWM, Pemmaraju N, Heidel FH. The evolving landscape of epigenetic target molecules and therapies in myeloid cancers: focus on acute myeloid leukemia and myeloproliferative neoplasms. Leukemia. 2025;39(8):1824-37. [DOI:10.1038/s41375-025-02639-x] [PMID] [PMCID]
20. Zhu Q, Zhang L, Li X, Chen F, Jiang L, Yu G, et al. Higher EZH2 expression is associated with extramedullary infiltration in acute myeloid leukemia. Tumour Biol. 2016;37(8):11409-20. [DOI:10.1007/s13277-016-4983-4] [PMID]
21. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y, et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol. 2011;90(6):643-53. [DOI:10.1007/s00277-010-1128-5] [PMID]
22. Chu MQ, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Zhang W, et al. EZH2 dysregulation: Potential biomarkers predicting prognosis and guiding treatment choice in acute myeloid leukaemia. J Cell Mol Med. 2020;24(2):1640-9. [DOI:10.1111/jcmm.14855] [PMID] [PMCID]
23. Stomper J, Meier R, Ma T, Pfeifer D, Ihorst G, Blagitko-Dorfs N, et al. Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients. Clin Epigenetics. 2021;13(1):77. [DOI:10.1186/s13148-021-01052-2] [DOI:10.1186/s13148-021-01087-5] [PMID] [PMCID]
24. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein HU, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23(1):69-78. [DOI:10.1038/nm.4247] [PMID] [PMCID]
25. Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev. 2023;57:100996. [DOI:10.1016/j.blre.2022.100996] [PMID] [PMCID]
26. Wang J, He N, Wang R, Tian T, Han F, Zhong C, et al. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep. 2020;10(1):2706. [DOI:10.1038/s41598-020-59365-w] [PMID] [PMCID]
27. Hou HA, Lu JW, Lin TY, Tsai CH, Chou WC, Lin CC, et al. Clinico-biological significance of suppressor of cytokine signaling 1 expression in acute myeloid leukemia. Blood Cancer J. 2017;7(7):e588. [DOI:10.1038/bcj.2017.67] [PMID] [PMCID]
28. Park Y, Shon SK, Kim A, Kim KI, Yang Y, Cho DH, et al. SOCS1 induced by NDRG2 expression negatively regulates STAT3 activation in breast cancer cells. Biochem Biophys Res Commun. 2007;363(2):361-7. [DOI:10.1016/j.bbrc.2015.04.039] [DOI:10.1016/j.bbrc.2007.08.195]
29. Tin E, Rutella S, Khatri I, Na Y, Yan Y, MacLean N, et al. SOCS1 Protects Acute Myeloid Leukemia against Allogeneic T Cell-Mediated Cytotoxicity. Blood Cancer Discov. 2025;6(3):217-32. [DOI:10.1158/2643-3230.BCD-24-0140] [PMID]
30. Bao X, Liu X, Liu N, Zhuang S, Yang Q, Ren H, et al. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype. Respir Res. 2021;22(1):194. [DOI:10.1186/s12931-021-01785-x] [PMID] [PMCID]
31. Wei L, Liu Q, Huang Y, Liu Z, Zhao R, Li B, et al. Knockdown of CTCF reduces the binding of EZH2 and affects the methylation of the SOCS3 promoter in hepatocellular carcinoma. Int J Biochem Cell Biol. 2020;120:105685. [DOI:10.1016/j.biocel.2020.105685] [PMID]
32. Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365-82. [DOI:10.1084/jem.20171417] [PMID] [PMCID]
33. Fang J, Zhang J, Zhu L, Xin X, Hu H. The epigenetic role of EZH2 in acute myeloid leukemia. Peer J. 2024;12:e18656. [DOI:10.7717/peerj.18656] [PMID] [PMCID]
34. Huang Y, Yu SH, Zhen WX, Cheng T, Wang D, Lin JB, et al. Tanshinone I, a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2. Theranostics. 2021;11(14):6891-904. [DOI:10.7150/thno.53170] [PMID] [PMCID]
35. Sbirkov Y, Schenk T, Kwok C, Stengel S, Brown R, Brown G, et al. Dual inhibition of EZH2 and G9A/GLP histone methyltransferases by HKMTI-1-005 promotes differentiation of acute myeloid leukemia cells. Front Cell Dev Biol. 2023;11:1076458. [DOI:10.3389/fcell.2023.1076458] [PMID] [PMCID]
36. Velez J, Dale B, Park KS, Kaniskan H, Yu X, Jin J. Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting non-canonical oncogenic functions of EZH2. Eur J Med Chem. 2024;267:116154. [DOI:10.1016/j.ejmech.2024.116154] [PMID] [PMCID]
37. Wang J, Yu X, Gong W, Liu X, Park KS, Ma A, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol. 2022;24(3):384-99. [DOI:10.1038/s41556-022-00850-x] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb