1. Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(3):502-26. [
DOI:10.1002/ajh.26822] [
PMID]
2. Schrezenmeier J, Huntly BJP. Epigenetic dysregulation in acute myeloid leukemia. Semin Hematol. 2025;S0037-1963(25):00028-9. [
DOI:10.1053/j.seminhematol.2025.06.003] [
PMID]
3. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487-500. [
DOI:10.1038/nrg.2016.59] [
PMID]
4. Meng Y, Nerlov C. Epigenetic regulation of hematopoietic stem cell fate. Trends Cell Biol. 2025;35(3):217-29. [
DOI:10.1016/j.tcb.2024.08.005] [
PMID] [
PMCID]
5. Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp Hematol. 2015;43(8):609-24. [
DOI:10.1016/j.exphem.2015.05.009] [
PMID]
6. Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules. 2024;14(9):1117. [
DOI:10.3390/biom14091117] [
PMID] [
PMCID]
7. Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. Epigenomes. 2024;8(2):23. [
DOI:10.3390/epigenomes8020023] [
PMID] [
PMCID]
8. Dong Y, Liao H, Huang F, Bao Y, Guo W, Tan Z. Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence. Sci Rep. 2025;15(1):15815. [
DOI:10.1038/s41598-025-99258-4] [
PMID] [
PMCID]
9. Zhang XH, Yang L, Liu XJ, Zhan Y, Pan YX, Wang XZ, et al. Association between methylation of tumor suppressor gene SOCS1 and acute myeloid leukemia. Oncol Rep. 2018;40(2):1008-16. [
DOI:10.3892/or.2018.6508] [
PMID]
10. Beaurivage C, Champagne A, Tobelaim WS, Pomerleau V, Menendez A, Saucier C. SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine. 2016;82:87-94. [
DOI:10.1016/j.cyto.2016.01.005] [
PMID]
11. Ludwig CH, Bintu L, Klein A, Treutlein B. Mapping chromatin modifications at the single cell level. Development. 2019;146(12):dev170217. [
DOI:10.1242/dev.170217] [
PMID] [
PMCID]
12. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. [
DOI:10.1016/j.cell.2007.02.005] [
PMID]
13. Bouligny IM, Maher KR, Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel). 2023;15(13):3292. [
DOI:10.3390/cancers15133292] [
PMID] [
PMCID]
14. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104. [
DOI:10.1186/s13045-020-00937-8] [
PMID] [
PMCID]
15. Hamed NAM, El Ghandour A, Abo Elwafa RA, Rezk MR, Ghallab O. Expression of Enhancer of Zeste Homolog 2 (EZH2) Gene in Acute Myeloid Leukemia. Asian Pac J Cancer Prev. 2023;24(1):81-5. [
DOI:10.31557/APJCP.2023.24.1.81] [
PMID] [
PMCID]
16. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128-34. [
DOI:10.1038/nm.4036] [
PMID] [
PMCID]
17. Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol. 2023;40(6):167. [
DOI:10.1007/s12032-023-02025-6] [
PMID] [
PMCID]
18. Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37(3):300-5. [
DOI:10.1002/gcc.10222] [
PMID]
19. Kühn MWM, Pemmaraju N, Heidel FH. The evolving landscape of epigenetic target molecules and therapies in myeloid cancers: focus on acute myeloid leukemia and myeloproliferative neoplasms. Leukemia. 2025;39(8):1824-37. [
DOI:10.1038/s41375-025-02639-x] [
PMID] [
PMCID]
20. Zhu Q, Zhang L, Li X, Chen F, Jiang L, Yu G, et al. Higher EZH2 expression is associated with extramedullary infiltration in acute myeloid leukemia. Tumour Biol. 2016;37(8):11409-20. [
DOI:10.1007/s13277-016-4983-4] [
PMID]
21. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y, et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol. 2011;90(6):643-53. [
DOI:10.1007/s00277-010-1128-5] [
PMID]
22. Chu MQ, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Zhang W, et al. EZH2 dysregulation: Potential biomarkers predicting prognosis and guiding treatment choice in acute myeloid leukaemia. J Cell Mol Med. 2020;24(2):1640-9. [
DOI:10.1111/jcmm.14855] [
PMID] [
PMCID]
23. Stomper J, Meier R, Ma T, Pfeifer D, Ihorst G, Blagitko-Dorfs N, et al. Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients. Clin Epigenetics. 2021;13(1):77. [
DOI:10.1186/s13148-021-01052-2] [
DOI:10.1186/s13148-021-01087-5] [
PMID] [
PMCID]
24. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein HU, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23(1):69-78. [
DOI:10.1038/nm.4247] [
PMID] [
PMCID]
25. Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev. 2023;57:100996. [
DOI:10.1016/j.blre.2022.100996] [
PMID] [
PMCID]
26. Wang J, He N, Wang R, Tian T, Han F, Zhong C, et al. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep. 2020;10(1):2706. [
DOI:10.1038/s41598-020-59365-w] [
PMID] [
PMCID]
27. Hou HA, Lu JW, Lin TY, Tsai CH, Chou WC, Lin CC, et al. Clinico-biological significance of suppressor of cytokine signaling 1 expression in acute myeloid leukemia. Blood Cancer J. 2017;7(7):e588. [
DOI:10.1038/bcj.2017.67] [
PMID] [
PMCID]
28. Park Y, Shon SK, Kim A, Kim KI, Yang Y, Cho DH, et al. SOCS1 induced by NDRG2 expression negatively regulates STAT3 activation in breast cancer cells. Biochem Biophys Res Commun. 2007;363(2):361-7. [
DOI:10.1016/j.bbrc.2015.04.039] [
DOI:10.1016/j.bbrc.2007.08.195]
29. Tin E, Rutella S, Khatri I, Na Y, Yan Y, MacLean N, et al. SOCS1 Protects Acute Myeloid Leukemia against Allogeneic T Cell-Mediated Cytotoxicity. Blood Cancer Discov. 2025;6(3):217-32. [
DOI:10.1158/2643-3230.BCD-24-0140] [
PMID]
30. Bao X, Liu X, Liu N, Zhuang S, Yang Q, Ren H, et al. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype. Respir Res. 2021;22(1):194. [
DOI:10.1186/s12931-021-01785-x] [
PMID] [
PMCID]
31. Wei L, Liu Q, Huang Y, Liu Z, Zhao R, Li B, et al. Knockdown of CTCF reduces the binding of EZH2 and affects the methylation of the SOCS3 promoter in hepatocellular carcinoma. Int J Biochem Cell Biol. 2020;120:105685. [
DOI:10.1016/j.biocel.2020.105685] [
PMID]
32. Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365-82. [
DOI:10.1084/jem.20171417] [
PMID] [
PMCID]
33. Fang J, Zhang J, Zhu L, Xin X, Hu H. The epigenetic role of EZH2 in acute myeloid leukemia. Peer J. 2024;12:e18656. [
DOI:10.7717/peerj.18656] [
PMID] [
PMCID]
34. Huang Y, Yu SH, Zhen WX, Cheng T, Wang D, Lin JB, et al. Tanshinone I, a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2. Theranostics. 2021;11(14):6891-904. [
DOI:10.7150/thno.53170] [
PMID] [
PMCID]
35. Sbirkov Y, Schenk T, Kwok C, Stengel S, Brown R, Brown G, et al. Dual inhibition of EZH2 and G9A/GLP histone methyltransferases by HKMTI-1-005 promotes differentiation of acute myeloid leukemia cells. Front Cell Dev Biol. 2023;11:1076458. [
DOI:10.3389/fcell.2023.1076458] [
PMID] [
PMCID]
36. Velez J, Dale B, Park KS, Kaniskan H, Yu X, Jin J. Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting non-canonical oncogenic functions of EZH2. Eur J Med Chem. 2024;267:116154. [
DOI:10.1016/j.ejmech.2024.116154] [
PMID] [
PMCID]
37. Wang J, Yu X, Gong W, Liu X, Park KS, Ma A, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol. 2022;24(3):384-99. [
DOI:10.1038/s41556-022-00850-x] [
PMID] [
PMCID]