دوره 27، شماره 125 - ( 9-1398 )                   جلد 27 شماره 125 صفحات 56-49 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Safaeian L, Zolfaghari B, Assarzadeh N, Ghadirkhomi A. Antioxidant and Anti-hyperlipidemic Effects of Bark Extract of Pinus eldarica in Dexamethasone-induced Dyslipidemic Rats. J Adv Med Biomed Res 2019; 27 (125) :49-56
URL: http://journal.zums.ac.ir/article-1-5843-fa.html
Antioxidant and Anti-hyperlipidemic Effects of Bark Extract of Pinus eldarica in Dexamethasone-induced Dyslipidemic Rats. Journal of Advances in Medical and Biomedical Research. 1398; 27 (125) :49-56

URL: http://journal.zums.ac.ir/article-1-5843-fa.html


چکیده:   (147189 مشاهده)

Background & Objective: Although Pinus eldarica is considered as a pine with many valuable phytochemical constituents, little is known about the pharmacological effects of its bark extract. Therefore, the present study aimed to evaluate in vivo antioxidant activity and also the possible beneficial effects of the bark extract of P. eldarica on dexamethasone-induced dyslipidemia in rats.
Materials & Methods: Total phenolic content was determined using Folin-Ciocalteu method. The in vivo antioxidant assays included the measurement of hydroperoxides level and ferric reducing antioxidant power (FRAP) value in plasma samples of rats receiving intraperitoneal injections (IP) injections of plant extract (100, 200 and 400 mg/kg) for 28 days. For induction of dyslipidemia, dexamethasone (10 mg/kg) was subcutaneously administered during 8 days. Different doses of extract were given orally plus dexamethasone in three groups of animals. Serum lipids, blood glucose and malondialdehyde (MDA) levels and liver histopathology were assessed.
Results: High total phenolic content was determined as 375±1.2 mg gallic acid equivalent/ g of dried bark extract. The extract significantly decreased plasma hydroperoxides level at all doses and increased FRAP value at the dose of 400 mg/kg during in vivo antioxidant analysis. P. eldarica led to a significant reduction in serum levels of blood glucose, total cholesterol, triglyceride and MDA and improved liver histopathological changes at the doses of 200 and 400 mg/kg in dyslipidemic rats.
Conclusion: These findings suggest the potential antioxidant, antihyperlipidemic and antihyperglycemic activities for the bark extract of P. eldarica which may be due to the high amounts of phenolic compounds.

متن کامل [PDF 688 kb]   (155412 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Pharmacology
دریافت: 1398/8/29 | پذیرش: 1398/9/6 | انتشار: 1398/9/9

فهرست منابع
1. Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J. 2015;7:399-409. [DOI:10.13005/bpj/504]
2. Howard Alpe G, Sear J, Foex P. Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Br J Anaesth. 2006; 97: 758-69. [DOI:10.1093/bja/ael303] [PMID]
3. Navab M, Ananthramaiah G, Reddy ST, et al. Thematic review series: the pathogenesis of atherosclerosis the oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993-1007. [DOI:10.1194/jlr.R400001-JLR200] [PMID]
4. Schulz E, Anter E, Keaney J, John F. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004; 11: 1093-104. [DOI:10.2174/0929867043365369] [PMID]
5. Peluso I, Morabito G, Urban L, Ioannone F, Serafi M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets. 2012; 12: 351-60. [DOI:10.2174/187153012803832602] [PMID]
6. Dhaliya S, Surya A, Dawn V, Betty C, Arun K, Sunil C. A review of hyperlipidemia and medicinal plants. Int JA PS BMS. 2013; 2: 219-37.
7. Gernandt DS, López GG, García SO, Liston A. Phylogeny and classification of Pinus. Taxon. 2005; 54: 29-42. 8. Zargary A. Medicinal plants )5th ed(. Tehran: Tehran University Press; 1996: 9-12. [DOI:10.2307/25065300]
8. Mamedov N, Gardner Z, Craker LE. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants. 2005; 11: 191-222. [DOI:10.1300/J044v11n01_07]
9. Mamedov N, Craker LE. Medicinal plants used for the treatment of bronchial asthma in Russia and Central Asia. J Herbs Spices Med Plants. 2001; 8: 91-117. [DOI:10.1300/J044v08n02_03]
10. Mehrzadi S, Ghaznavi H, Tajallizadehkhoob Y, Fakhrzadeh H. Effects of Pinus eldarica Medw. nut extract on blood glucose and cholesterol levels in hypercholesterolemic alloxan-induced diabetic rats. J Med Plants. 2013; 1: 68-74.
11. Huseini HF, Anvari MS, Khoob YT, et al. Anti-hyperlipidemic and anti-atherosclerotic effects of Pinus eldarica Medw. nut in hypercholesterolemic rabbits. Daru. 2015; 23:32. 13. Hosseinzadeh H, Khooei AR, Khashayarmanesh Z, Motamed-Shariaty V. Antiurolithiatic activity of Pinus eldarica medw: fruits aqueous extract in rats. Urol J. 2010; 7: 232-7. [DOI:10.1186/s40199-015-0114-9] [PMID] [PMCID]
12. Babaee F, Safaeian L, Zolfaghari B, Haghjoo Javanmard S. Cytoprotective effect of hydroalcoholic extract of Pinus eldarica bark against H2O2-induced oxidative stress in human endothelial cells. Iran Biomed J. 2016; 20: 161-7. [DOI:10.4103/1735-5362.192488] [PMID] [PMCID]
13. Iravani S, Zolfaghari B. Phytochemical analysis of Pinus eldarica bark. Res Pharm Sci. 2014; 9: 243-50.
14. Yegdaneh A, Ghannadi A, Dayani L. Chemical constituents and biological activities of two Iranian Cystoseira species. Res Pharm Sci. 2016; 11: 311-7. [DOI:10.4103/1735-5362.189307] [PMID] [PMCID]
15. Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994; 233: 182-9. [DOI:10.1016/S0076-6879(94)33021-2]
16. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996; 239: 70-6. [DOI:10.1006/abio.1996.0292] [PMID]
17. Kumar VR, Inamdar MN, Nayeemunnisa, Viswanatha GL. Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: possible role of decreased lecithin cholesterol acetyl transferase activity. Asian Pac J Trop Med. 2011; 4: 658-60. [DOI:10.1016/S1995-7645(11)60167-3]
18. Mesripour A, Iyer A, Brown L. Mineralocorticoid receptors mediate cardiac remodelling in morphine-dependent rats. Basic Clin Pharmacol Toxicol. 2012; 111: 75-80. [DOI:10.1111/j.1742-7843.2012.00860.x] [PMID]
19. Bera S, Greiner S, Choudhury A, et al. Dexamethasone-induced oxidative stress enhances myeloma cell radiosensitization while sparing normal bone marrow hematopoiesis. Neoplasia. 2010; 12: 980-92. [DOI:10.1593/neo.101146] [PMID] [PMCID]
20. Pragda SS, Kuppast I, Mankani K, Ramesh L. Evaluation of antihyperlipidemic activity of leaves of Portulaca oleracea Linn against dexamethasone induced hyperlipidemia in rats. Int J Pharm Pharm Sci. 2012; 4: 279-83.
21. Bargi R, Asgharzadehyazdi F, BeheshtI F, et al. The effects of hydroalcoholic extract of Pinus eldarica on hippocampal tissue oxidative damage in pentylenetetrazole-induced seizures in rat. Curr Nutr Food Sci. 2017; 13: 50-6. [DOI:10.2174/1573401312666161017142930]
22. Sadeghi Afjeh M, Fallah Huseini H, Tajalizadekhoob Y, Mirarefin M, Taheri E, Saeednia S. Determination of phenolic compounds in Pinus eldarica by HPLC. J Med Plants. 2014; 13: 22-33. [DOI:10.1055/s-0033-1352259]
23. Joo HE, Lee HJ, Sohn EJ, et al. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic beta cells. Biosci Biotechnol Biochem. 2013; 77: 1997-2001. [DOI:10.1271/bbb.130254] [PMID]
24. Liu X, Wei J, Tan F, Zhou S, Wurthwein G, Rohdewald P. Antidiabetic effect of pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004; 75: 2505-13. [DOI:10.1016/j.lfs.2003.10.043] [PMID]
25. Kaushik P, Khokra S, Kaushik D. Evaluation of antidiabetic potential of Pinus roxburghii bark extract in alloxan induced diabetic rats. J Pharmacogn Nat Prod. 2015;1: 2-5. [DOI:10.4172/2472-0992.1000105]
26. El-Manawaty M, Gohar L. In vitro alpha-glucosidase inhibitory activity of Egyptian plant extracts as an indication for their antidiabetic activity. In Vitro. 2018; 11: 360-7. [DOI:10.22159/ajpcr.2018.v11i7.25856]
27. Devaraj S, Vega-Lopez S, Kaul N, Schonlau F, Rohdewald P, Jialal I. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 2002; 37: 931-4. [DOI:10.1007/s11745-006-0982-3] [PMID]
28. Durackova Z, Trebaticky B, Novotny V, Zitnanova I, Breza J. Lipid metabolism and erectile function improvement by pycnogenol®, extract from the bark of pinus pinaster in patients suffering from erectile dysfunction-a pilot study. Nutr Res. 2003; 23: 1189-98. [DOI:10.1016/S0271-5317(03)00126-X]
29. Kim JH, Lee HJ, Jeong SJ, Lee MH, Kim SH. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytother Res. 2012; 26: 1314-19. [DOI:10.1002/ptr.3734] [PMID]
30. Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial. Am J Clin Nutr. 2016; 104: 1671-82. [DOI:10.3945/ajcn.116.137075] [PMID] [PMCID]
31. Kim A, Nam YJ, Lee CS. Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-kappaB activation-mediated cell death. Brain Res Bull. 2017; 134: 63-71. [DOI:10.1016/j.brainresbull.2017.07.008] [PMID]
32. Theriault A, Wang Q, Van Iderstine SC, Chen B, Franke AA, Adeli K. Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. J Lipid Res. 2000; 41: 1969-79.
33. Huang DW, Shen SC, Wu JS. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J Agric Food Chem. 2009; 57: 7687-92. [DOI:10.1021/jf901376x] [PMID]
34. Liao CC, Ou TT, Wu CH, Wang CJ. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem. 2013; 61: 11082-8. 37. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol. 2016; 43: 242-50. [DOI:10.1111/1440-1681.12514] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb