دوره 28، شماره 126 - ( 11-1398 )                   جلد 28 شماره 126 صفحات 53-47 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kourosharami M, Mohsenzadegan M, Komaki A. A Review of Excitation-Inhibition Balance in the Nucleus Tractus Solitarius as a Gateway to Neural Cardiovascular Regulation. J Adv Med Biomed Res 2020; 28 (126) :47-53
URL: http://journal.zums.ac.ir/article-1-5894-fa.html
A Review of Excitation-Inhibition Balance in the Nucleus Tractus Solitarius as a Gateway to Neural Cardiovascular Regulation. Journal of Advances in Medical and Biomedical Research. 1398; 28 (126) :47-53

URL: http://journal.zums.ac.ir/article-1-5894-fa.html


چکیده:   (143971 مشاهده)
Physiological experiments show that mean blood pressure is controlled by the nervous system in long-term. The nucleus tractus solitarius (NTS), located in the dorsomedial medulla oblongata is extensively recognized as an essential brain area complicated in the integration of numerous viscerosensory processes, such as respiratory, cardiovascular, hepatic gustatory, and renal regulation mechanisms. NTS is a region of the brain stem in which primary baroreceptor afferents terminate and synapse with the rostral ventrolateral medulla (RVLM) via a nitric oxidergic pathway and hence is vital in the normal control of arterial pressure (AP). The NTS as a comparator evaluates the error signals between afferents of cardiovascular receptor and central neural structures and sends signals to nuclei that normalize the circulatory variables. Furthermore, during exercise, signals from the muscle receptors reach the NTS that activate sympathetic premotor neurons and thus cause pressor and tachycardiac responses. The GABAergic interneurons of NTS may contribute to baroreceptor reflex resetting by the inhibition of the barosensitive NTS neurons, thereby enhancing the sympathetic nerve activity. The basic functions of the NTS with respect to regulating the cardiovascular system are introduced in this review. Then, the potential mechanisms underlying cardiovascular regulation are discussed with a focus on NTS functions.
متن کامل [PDF 281 kb]   (155378 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: Medical Biology
دریافت: 1398/7/28 | پذیرش: 1398/10/7 | انتشار: 1398/10/15

فهرست منابع
1. Waki H. Central mechanisms of cardiovascular regulation during exercise: Integrative functions of the nucleus of the solitary tract. J Physical Fitness Sports Med. 2012;1(2):253-61. [DOI:10.7600/jpfsm.1.253]
2. Zanutto BS, Valentinuzzi ME, Segura ET. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius. BiomedEngineer Online. 2010;9(1):4. [DOI:10.1186/1475-925X-9-4]
3. Paton J, Spyer K. Central nervous control of the cardiovascular system. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. 2013:35-51. [DOI:10.1093/med/9780198566342.003.0004]
4. O'hagan KP, Casey SM, Clifford PS. Muscle chemoreflex increases renal sympathetic nerve activity during exercise. J Apply Physiol. 1997;82(6):1818-25. [DOI:10.1152/jappl.1997.82.6.1818]
5. Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am J PhysioRegInteg Compar Physiol. 2005;288(4):R846-R55. [DOI:10.1152/ajpregu.00474.2004]
6. Kourosh Arami M, Sarihi A, Heshmatian B, Malakouti S, Amiri I. The effect of nucleus tractus solitarius inactivation on blood pressure in diabetic rats. Iran JPharmaceut Res. 2004:(3)1:76.
7. Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurol. 2017;88(12):1187-96. [DOI:10.1212/WNL.0000000000003751]
8. Kawai Y. Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. FrontNeuroanat. 2018;12:63. [DOI:10.3389/fnana.2018.00063]
9. Cui S, Wang K, Wu SB, et al. Electroacupuncture modulates the activity of the hippocampus-nucleus tractus solitarius-vagus nerve pathway to reduce myocardial ischemic injury. Neural Regenerat Res. 2018;13(9):1609. [DOI:10.4103/1673-5374.237124]
10. Lee HY, Oh KH, Yang EK, Ahn DK, Lee WJ, Park JS. Cardiovascular effects of endogenous GABA in the nucleus tractus solitarius. Korean Circ J. 1997;27(1):94-101. [DOI:10.4070/kcj.1997.27.1.94]
11. Zubcevic J, Potts JT. Role of GABAergic neurones in the nucleus tractus solitarii in modulation of cardiovascular activity. Experiment Physiol. 2010;95(9):909-18. [DOI:10.1113/expphysiol.2010.054007]
12. Carter DA, Choong YT, Connelly AA, et al. Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse. Am J PhysiolRegul Integ Comp Physiol. 2017;313(4):R438-R49. [DOI:10.1152/ajpregu.00168.2017]
13. Machado BH, Mauad H, Chianca Jr D, Haibara A, Colombari E. Autonomic processing of the cardiovascular reflexes in the nucleus tractus solitari. Braz J Med Biol Res. 1997;30:533-5. [DOI:10.1590/S0100-879X1997000400015]
14. Komaki A, Shahidi S, Sarihi A, et al. Effects of neonatal C-fiber depletion on interaction between neocortical short-term and long-term plasticity. Basic Clin Neurosci. 2013;4(2):136-145
15. Arami MK, Hajizadeh S, Semnanian S. Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons. Brain Res. 2016;1648:365-71. [DOI:10.1016/j.brainres.2016.07.036]
16. Arami MK, Semnanian S, Javan M, Hajizadeh S, Sarihi A. Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat. Physiol Pharmacol. 2011;14(4):337-48.
17. Sapru HN. Neurotransmitters in the nucleus tractus solitarius mediating cardiovascular function. Neural mechanisms of cardiovascular regulation: Springer; 2004. p. 81-98. [DOI:10.1007/978-1-4419-9054-9_4]
18. Erickson JD, De Gois S, Varoqui H, Schafer MK-H, Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. NeurochemInt. 2006;48(6-7):643-9. [DOI:10.1016/j.neuint.2005.12.029]
19. Kilman V, Van Rossum MC, Turrigiano GG. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J Neurosci. 2002;22(4):1328-37. [DOI:10.1523/JNEUROSCI.22-04-01328.2002]
20. Spary EJ, Maqbool A, Saha S, Batten TF. Increased GABA B receptor subtype expression in the nucleus of the solitary tract of the spontaneously hypertensive rat. J Molec Neurosci. 2008;35(2):211-24. [DOI:10.1007/s12031-008-9055-9]
21. Zhang W, Herrera-Rosales M, Mifflin S. Chronic hypertension enhances the postsynaptic effect of baclofen in the nucleus tractus solitarius. Hypertension. 2007;49(3):659-63. [DOI:10.1161/01.HYP.0000253091.82501.c0]
22. Potts J, Paton J, Mitchell J, et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neurosci. 2003;119(1):201-14. [DOI:10.1016/S0306-4522(02)00953-3]
23. Mifflin SW. What does the brain know about blood pressure? Physiology. 2001;16(6):266-71. [DOI:10.1152/physiologyonline.2001.16.6.266]
24. Derera ID, Delisle BP, Smith BN. Functional neuroplasticity in the nucleus tractus solitarius and increased risk of sudden death in mice with acquired temporal lobe epilepsy. eNeuro. 2017;4(5). [DOI:10.1523/ENEURO.0319-17.2017]
25. Derera ID, Smith KC, Smith BN. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy. JNeurophysiol. 2019;121(1):177-87. [DOI:10.1152/jn.00556.2018]
26. Kolpakova J, Li L, Hatcher JT, et al. Responses of nucleus tractus solitarius (NTS) early and late neurons to blood pressure changes in anesthetized F344 rats. PloS one. 2017;12(4). [DOI:10.1371/journal.pone.0169529]
27. Rogers RF, Paton J, Schwaber JS. NTS neuronal responses to arterial pressure and pressure changes in the rat. AmJ PhysiolReg IntegCompar Physiol. 1993;265(6):R1355-R68. [DOI:10.1152/ajpregu.1993.265.6.R1355]
28. Zhang J, Mifflin SW. Responses of aortic depressor nerve‐evoked neurones in rat nucleus of the solitary tract to changes in blood pressure. JPhysiol. 2000;529(2):431-43. [DOI:10.1111/j.1469-7793.2000.00431.x]
29. Deuchars J, Li YW, Kasparov S, Paton JF. Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. J Compar Neurol. 2000;417(2):233-49. https://doi.org/10.1002/(SICI)1096-9861(20000207)417:2<233::AID-CNE8>3.0.CO;2-V [DOI:10.1002/(SICI)1096-9861(20000207)417:23.0.CO;2-V]
30. Dampney RA, Polson JW, Potts PD, Hirooka Y, Horiuchi J. Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cell Mol Neurobiol. 2003; 23:597-616. [DOI:10.1023/A:1025080314925]
31. Gu H, Lin M, Liu J, et al. Selective impairment of central mediation of baroreflex in anesthetized young adult Fischer 344 rats after chronic intermittent hypoxia. Am J PhysiolHeart Circ Physiol. 2007;293(5):H2809-H18. [DOI:10.1152/ajpheart.00358.2007]
32. Waki H, Murphy D, Yao ST, Kasparov S, Paton JF. Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension. 2006;48(4):644-50. [DOI:10.1161/01.HYP.0000238200.46085.c6]
33. Kourosh Arami M, Sarihi A, Malacoti SM, Behzadi G, Vahabian M, Amiri I. The effect of nucleus tractus solitarius nitric oxidergic neurons on blood pressure in diabetic rats. Iran BiomedJ.2006;10(1):15-9.
34. Arami MK, Sarihi A, Behzadi J, Malakouti SM, Amiri I, Ekbatani RZ. The effect of hyperglycemia on nitric oxidergic neurons in nucleus tractus solitarius and blood pressure regulation in rats with induced diabetes. Iran J DiabetLipid Disorder. 2005;4(3):E2.
35. Dias ACR, Vitela M, Colombari E, Mifflin SW. Nitric oxide modulation of glutamatergic, baroreflex, and cardiopulmonary transmission in the nucleus of the solitary tract. Am J PhysiolHeart Circ Physio. 2005;288(1):H256-H62. [DOI:10.1152/ajpheart.01149.2003]
36. Farr SA, Banks WA, Kumar VB, Morley JE. Orexin-A-induced feeding is dependent on nitric oxide. Peptides. 2005;26(5):759-65. [DOI:10.1016/j.peptides.2004.12.004]
37. Cutler DJ, Morris R, Evans ML, Leslie RA, Arch JR, Williams G. Orexin-A immunoreactive neurons in the rat hypothalamus do not contain neuronal nitric oxide synthase (nNOS). Peptides. 2001;22(1):123-8. [DOI:10.1016/S0196-9781(00)00364-8]
38. Smith PM, Connolly BC, Ferguson AV. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res. 2002;950(1-2):261-7. [DOI:10.1016/S0006-8993(02)03048-2]
39. Babasafari M, Kourosharami M, Behman J, Farhadi M, Komaki A. Alteration of phospholipase C expression in rat visual cortical neurons by chronic blockade of orexin receptor 1. Int J Pept Res Ther.2019:1-7. [DOI:10.1007/s10989-019-09943-y]
40. Rezaei Z, Kourosh-Arami M, Azizi H, Semnanian S. Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neurosci Lett. 2020:724:134875. [DOI:10.1016/j.neulet.2020.134875]
41. Yang B, Ferguson AV. Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic and K+ conductances. JNeurophysiol. 2003;89(4):2167-75. [DOI:10.1152/jn.01088.2002]
42. Yang B, Samson WK, Ferguson AV. Excitatory effects of orexin-A on nucleus tractus solitarius neurons are mediated by phospholipase C and protein kinase C. J Neurosci. 2003;23(15):6215-22. [DOI:10.1523/JNEUROSCI.23-15-06215.2003]
43. Waki H, Takagishi M, Gouraud SS. Central mechanisms underlying anti-hypertensive effects of exercise training. J Physic Fit Sports Med. 2014;3(3):317-25. [DOI:10.7600/jpfsm.3.317]
44. Potts JT. Inhibitory neurotransmission in the nucleus tractus solitarii: implications for baroreflex resetting during exercise. Experiment Physiol. 2006;91(1):59-72. [DOI:10.1113/expphysiol.2005.032227]
45. Arami MK. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia. Iran J Basic MedSci. 2015;18(10):989.
46. Malakouti SM, Kourosh AM, Sarihi A, et al. Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male wistar rats in response to hypothermia. Iran Biomed J.2008;12(4):237-40

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb