1. Sajadi E, Dadras S, Bayat M, et al. Impaired spermatogenesis associated with changes in spatial arrangement of sertoli and spermatogonial cells following induced diabetes. J Cell Biochem. 2019;120(10):17312-25. [
DOI:10.1002/jcb.28995]
2. Ding GL, Liu Y, Liu ME, et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948-53. [
DOI:10.4103/1008-682X.150844]
3. Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Human Reproduc Update. 2018;24(1):86-105. [
DOI:10.1093/humupd/dmx033]
4. Shi GJ, Li ZM, Zheng J, et al. Diabetes associated with male reproductive system damages: Onset of presentation, pathophysiological mechanisms and drug intervention. Biomed Pharmacother. 2017;90:562-74. [
DOI:10.1016/j.biopha.2017.03.074]
5. La Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes mellitus and sperm parameters. J Androl. 2012;33(2):145-53. [
DOI:10.2164/jandrol.111.013193]
6. Xu M, Dai D, Zhang Q, Cheng Y, Dai Y. Upregulated NADPH oxidase contributes to diabetic testicular complication and is relieved by strontium fructose 1, 6-diphosphate. Experiment Clin Endocrinol Diabet. 2010;118(07):459-65. [
DOI:10.1055/s-0030-1248325]
7. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longevit. 2008;1(1):15-24. [
DOI:10.4161/oxim.1.1.6843]
8. Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect Tissue Res. 2014;55(2):71-9. [
DOI:10.3109/03008207.2013.877894]
9. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophysic Acta Gen Subj. 2017;1861(4):802-13. [
DOI:10.1016/j.bbagen.2017.01.018]
10. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science (New York, NY). 1991;254(5035):1183-5. [
DOI:10.1126/science.254.5035.1183]
11. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Injury. 2017;31(8):1142-50. [
DOI:10.1080/02699052.2017.1300835]
12. Namadr F, Bahrami F, Bahari Z, Ghanbari B, Shahyad S, Mohammadi MT. Fullerene C60 nanoparticles decrease liver oxidative stress through increment of liver antioxidant capacity in streptozotocin-induced diabetes in rats. React Oxygen Spec. 2020;9(26):70-80 [
DOI:10.20455/ros.2020.809]
13. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-9. [
DOI:10.1021/ja00070a064]
14. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene. Biomaterials. 2012;33(19):4936-46. [
DOI:10.1016/j.biomaterials.2012.03.036]
15. Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Diseas. 2018;27(11):3053-65. [
DOI:10.1016/j.jstrokecerebrovasdis.2018.06.042]
16. Elshater AA, Haridy MAM, Salman MMA, Fayyad AS, Hammad S. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother. 2018;97:53-9. [
DOI:10.1016/j.biopha.2017.10.134]
17. Nimibofa A, Newton EA, Cyprain AY, Donbebe W. Fullerenes: synthesis and applications. J Mater Sci. 2018;7:22-33. [
DOI:10.5539/jmsr.v7n3p22]
18. Takahashi M, Kato H, Doi Y, et al. Sub-acute oral toxicity study with fullerene C60 in rats. J Toxicol Sci. 2012;37(2):353-61. [
DOI:10.2131/jts.37.353]
19. Pirmoradi L, Mohammadi MT, Safaei A, Mesbah F, Dehghani GA. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats? Iran Biomed J. 2014;18(3):173.
20. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [
DOI:10.1016/S0076-6879(84)05016-3]
21. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85(2):337-41.
22. Tietz F. Enzymic method for quantitatve determination of nanogram amount of total and oxidized glutathione: applications to mammalian blood and other tissues. Biocham. 1969;27:502-22. [
DOI:10.1016/0003-2697(69)90064-5]
23. Sergeeva V, Kraevaya O, Ershova E, et al. Antioxidant properties of fullerene derivatives depend on their chemical structure: a study of two fullerene derivatives on HELFs. Oxid Med Cell Longevit. 2019;2019. [
DOI:10.1155/2019/4398695]
24. Nedzvetskii V, Pryshchepa I, Tykhomyrov A, Baydas G. Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated C 60 fullerene. Neurophysiol. 2016;48(2):130-40. [
DOI:10.1007/s11062-016-9579-5]
25. Han XX, Jiang YP, Liu N, et al. Protective effects of astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed Pharmacother. 2019;110:561-70. [
DOI:10.1016/j.biopha.2018.12.012]
26. Zhu X, Guo F, Tang H, et al. Islet transplantation attenuating testicular injury in type 1 diabetic rats is associated with suppression of oxidative stress and inflammation via Nrf-2/HO-1 and NF-κB Pathways. J Diabet Res. 2019;2019: 8712492 [
DOI:10.1155/2019/8712492]
27. Maremanda KP, Khan S, Jena G. Role of zinc supplementation in testicular and epididymal damages in diabetic rat: involvement of Nrf2, SOD1, and GPX5. Biolog Trace Element Res. 2016;173(2):452-64. [
DOI:10.1007/s12011-016-0674-7]
28. Heit C, Marshall S, Singh S, et al. Catalase deletion promotes prediabetic phenotype in mice. Free Radical Biol Med. 2017;103:48-56. [
DOI:10.1016/j.freeradbiomed.2016.12.011]
29. Martínez G, Popov I, Pérez G, et al. Contribution to characterization of oxidative stress in diabetic patients with macroangiopatic complication. Acta Farm Bonaerense. 2005;24(2):197-203.
30. Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radical Biol Med. 2009;47(6):786-93. [
DOI:10.1016/j.freeradbiomed.2009.06.016]
31. Galvan YP, Alperovich I, Zolotukhin P, et al. Fullerenes as anti-aging antioxidants. Curr Aging Sci. 2017;10(1):56-67. [
DOI:10.2174/1874609809666160921120008]
32. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 2016;15:378-90.
33. Osuna S, Swart M, Sola M. On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry (Weinheim an der Bergstrasse, Germany). 2010;16(10):3207-14. [
DOI:10.1002/chem.200902728]
34. Darabi S, Mohammadi MT. Fullerol potentiates the brain antioxidant defense system and decreases γ-glutamyl transpeptidase (GGT) mRNA during cerebral ischemia/reperfusion injury. Europ J Nanomed. 2017;9(1):25-32. [
DOI:10.1515/ejnm-2016-0024]
35. Sumi N, Chitra K. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquatic Toxicol. 2019;210:196-206. [
DOI:10.1016/j.aquatox.2019.03.003]