1. Chilelli N, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Nutr, Metab, Cardiovasc Dis. 2013;23(10):913-9. [
DOI:10.1016/j.numecd.2013.04.004]
2. De Nicola LG, Liberti FB, Sagliocca ME, Conte A, Minutolo G. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: Targeting the renal tubule in diabetes. . Am J Kidney Dis. 2014;64 16-24. [
DOI:10.1053/j.ajkd.2014.02.010]
3. Tangvarasittichai S. Oxidative stress and inflammation in diabetic complications. World J Diabetes. 2015;6(3):456-80. [
DOI:10.4239/wjd.v6.i3.456]
4. Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi Khalil C. Macrovascular complications in patients with diabetes and prediabetes. BioMed Res Int. 2017;2017: 7839101 [
DOI:10.1155/2017/7839101]
5. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14(5):575-85. [
DOI:10.1016/j.cmet.2011.07.015]
6. Kawanami D MK, Utsunomiya K. Dyslipidemia in diabetic nephropathy. Replace Ther 2016;2:16. [
DOI:10.1186/s41100-016-0028-0]
7. Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. Ann Acad Med Singapore. 2010;39(12):909-4.
8. Okura T, Ueta E, Nakamura R, et al. High serum advanced glycation end products are associated with decreased insulin secretion in patients with type 2 diabetes: A brief report. J Diabetes Res. 2017;2017:5139750. [
DOI:10.1155/2017/5139750]
9. Wortmann M, Peters AS, Hakimi M, Bockler D, Dihlmann S. Glyoxalase I (Glo1) and its metabolites in vascular disease. Biochem Soc Trans. 2014;42(2):528-33. [
DOI:10.1042/BST20140003]
10. Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol. 2020. [
DOI:10.1007/s40620-020-00718-z]
11. Nigro C, Leone A, Raciti GA, et al. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int J Mol Sci. 2017;18(1):188-202. [
DOI:10.3390/ijms18010188]
12. Nagai R, Shirakawa J, Fujiwara Y, et al. Detection of aGEs as markers for carbohydrate metabolism and protein denaturation. J Clin Biochem Nutr. 2014;55(1):1-6. [
DOI:10.3164/jcbn.13-112]
13. Mahdavifard S NM. Effect of cysteine on transforming growth factor β1 as the main cause of renal disorder in a rat model of diabetic nephropathy. J Mazandaran Univ Med Sci. 2019;29:95-101.
14. Mahdavifard S, Nakhjavani M. Effect of glutamine on oxidative stress, inflammatory, and glycation markers, and the activity of glyoxalase system in diabetic rats with atherosclerosis. J Mazandaran Univ Med Sci. 2019;28(170):33-42.
15. Mahdavifard S, Nakhjavani M. Effect of linalool on the activity of glyoxalase-I and diverse glycation products in rats with type 2 diabetes. J Mazandaran Univ Med Sci. 2020;30(186):24-33.
16. Nix WA, Zirwes R, Bangert V, et al. Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res Clin Pract. 2015;107(1):157-65. [
DOI:10.1016/j.diabres.2014.09.058]
17. Duncan A, Talwar D, McMillan DC, Stefanowicz F, O'Reilly DS. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr. 2012;95(1):64-71. [
DOI:10.3945/ajcn.111.023812]
18. Ueland PM, McCann A, Midttun O, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med. 2017;53:10-27. [
DOI:10.1016/j.mam.2016.08.001]
19. Cole T, Kuisk I, Patsch W, Schonfeld G. Effects of high cholesterol diets on rat plasma lipoproteins and lipoprotein-cell interactions. J Lipid Res. 1984;25(6):593-603.
20. Mahdavifard S, Bathaie S, Nakhjavani M, Heidarzadeh H. L-cysteine is a potent inhibitor of protein glycation on both albumin and LDL, and prevents the diabetic complications in diabetic-atherosclerotic rat. Food Res Int. 2014;62:909-16. [
DOI:10.1016/j.foodres.2014.05.008]
21. Mahdavifard S, Bathaie SZ, Nakhjavani M, Taghikhani M. The synergistic effect of antiglycating agents (MB-92) on inhibition of protein glycation, misfolding and diabetic complications in diabetic-atherosclerotic rat. Eur J Med Chem. 2016;121:892-902. [
DOI:10.1016/j.ejmech.2015.11.035]
22. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med. 1998;158(9):998. [
DOI:10.1001/archinte.158.9.998]
23. Kiran SG, Dorisetty RK, Umrani MR, et al. Pyridoxal 5′ phosphate protects islets against streptozotocin-induced beta-cell dysfunction-in vitro and in vivo. Exp Biol Med. 2011;236(4):456-65. [
DOI:10.1258/ebm.2011.010361]
24. Bilgir O, Yavuz M, Bilgir F, et al. Relationship between insulin resistance, hs-CRP, and body fat and serum osteoprotegerin/RANKL in prediabetic patients. Minerva Endocrinol. 2018;43(1):19-26.
25. Swastini DA, Wiryanthini IAD, Ariastuti NLP, Muliantara A. Atherosclerosis prediction with high sensitivity C-reactive protein (hs-CRP) and related risk factor in patient with dyslipidemia. Macedonian J Med Sci. 2019;7(22):3887-90. [
DOI:10.3889/oamjms.2019.526]
26. Sinha SK, Nicholas SB, Sung JH, et al. hs-CRP is associated with incident diabetic nephropathy: findings from the Jackson heart study. Diabetes Care. 2019;42(11):2083-9. [
DOI:10.2337/dc18-2563]
27. Cheng CH, Huang SC, Chiang TY, Wong Y, Huang YC. Higher plasma pyridoxal phosphate is associated with increased antioxidant enzyme activities in critically Ill surgical patients. BioMed Res Int. 2013;2013:1-7. [
DOI:10.1155/2013/572081]
28. Barter PJ. Lipoprotein metabolism and CKD: Overview. Clin Exp Nephrol. 2014;18:243-6. [
DOI:10.1007/s10157-013-0866-9]