دوره 31، شماره 144 - ( 10-1401 )                   جلد 31 شماره 144 صفحات 92-86 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azadfar P, Noormohammadi Z, Noroozian M, Eidi A, Mortazavi P. Effect of Memantine on Expression of NAT-Rad18, Rad18 and Sorl1 Genes in Rat Model of Alzheimer's Disease. J Adv Med Biomed Res 2023; 31 (144) :86-92
URL: http://journal.zums.ac.ir/article-1-6771-fa.html
Effect of Memantine on Expression of NAT-Rad18, Rad18 and Sorl1 Genes in Rat Model of Alzheimer's Disease. Journal of Advances in Medical and Biomedical Research. 1401; 31 (144) :86-92

URL: http://journal.zums.ac.ir/article-1-6771-fa.html


چکیده:   (10990 مشاهده)

Background and Objective: Dysregulation of long-term expression of non-coding RNAs (lncRNAs) has a potential role in progressive brain disorders such as Alzheimer's disease. This study aimed to analyze the apoptosis and expression of 51A and NAT-Rad18 lncRNAs and their target genes in brain tissue and peripheral blood mononuclear cells (PBMCs) of the rat model of AD, before and after memantine treatment.
Materials and Methods: Twenty-eight male Wistar rats were divided into four groups: 1. Normal control (n = 4), 2. Sham-operated (n = 4), 3. Alzheimer's control (n = 10), and 4. The experimental group (n = 10) was treated with memantine. The qPCR and TUNEL tests were used to detect the lncRNAs expression and apoptosis.
Results: Sorl1 gene was reduced in brain tissue of Alzheimer’s control (p = 0.016) and PBMCs of Alzheimer's control and experimental groups (p = 0.002 and p = 0.001 respectively). The expression of NAT-Rad18 and Rad18 genes increased in brain tissue of Alzheimer's control group (p = 0.002 and p = 0.04 respectively) while reduced in PBMCs of Alzheimer's control and experimental groups (p = 0.005 and p = 0.045 for NAT-Rad18, p = 0.01 and p = 0.006 for Rad18).
Conclusion: ROC curve analysis showed 100% sensitivity and 85.7% specificity for the Sorl1 gene with 0.911 under the curve area and 100% sensitivity and 100% specificity for NAT-Rad18 and Rad18, separately with one under the curve area. Decreased expression in Sorl1, NAT-Rad18, and Rad18 genes can be used as blood biomarkers for diagnosis independently. However, studies on Alzheimer's patients are needed.

متن کامل [PDF 589 kb]   (10202 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Medical Biology
دریافت: 1400/8/5 | پذیرش: 1401/5/11 | انتشار: 1401/9/21

فهرست منابع
1. Babri S, Mohaddes G, Feizi I, et al. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer׳ s disease: an electrophysiological study. Eur. J. Pharmacol. 2014;732:19-25. [DOI:10.1016/j.ejphar.2014.03.018] [PMID]
2. Luo Q, Chen Y. Long noncoding RNAs and Alzheimer's disease. Clin interv aging. 2016;11:867. [DOI:10.2147/CIA.S107037] [PMID] [PMCID]
3. Ciarlo E, Massone S, Penna I, et al. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis models mech. 2013;6(2):424-33. [DOI:10.1242/dmm.009761] [PMID] [PMCID]
4. Ma QL, Galasko DR, Ringman JM, et al. Reduction of SorLA/LR11, a sorting protein limiting β-amyloid production, in alzheimer disease cerebrospinal fluid. Arch neurol. 2009;66(4):448-57. [DOI:10.1001/archneurol.2009.22] [PMCID]
5. Lee JH, Barral S, Reitz C. The neuronal sortilin-related receptor gene SORL1 and late-onset Alzheimer's disease. Curr neurol Neurosci Rep. 2008;8(5):384. [DOI:10.1007/s11910-008-0060-8] [PMID] [PMCID]
6. Andersen OM, Rudolph IM, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease. Acta Neuropathol. 2016;132(5):653-65. [DOI:10.1007/s00401-016-1615-4] [PMID] [PMCID]
7. Mehmedbasic A, Christensen SK, Nilsson J, et al. SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J Biol Chem. 2015;290(6):3359-76. [DOI:10.1074/jbc.M114.619940] [PMID] [PMCID]
8. Khvotchev M, Südhof TC. Proteolytic processing of amyloid-β precursor protein by secretases does not require cell surface transport. J Biol Chem. 2004;279(45):47101-8. [DOI:10.1074/jbc.M408474200] [PMID]
9. Andersen OM, Reiche J, Schmidt V, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci. 2005;102(38):13461-6. [DOI:10.1073/pnas.0503689102] [PMID] [PMCID]
10. Parenti R, Paratore S, Torrisi A, Cavallaro S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β‐amyloid‐induced apoptosis. Eur. J. Neurosci. 2007;26(9):2444-57. [DOI:10.1111/j.1460-9568.2007.05864.x] [PMID]
11. Inagaki A, Sleddens-Linkels E, van Cappellen WA, et al. Human RAD18 interacts with ubiquitylated chromatin components and facilitates RAD9 recruitment to DNA double strand breaks. PloS One. 2011;6(8). [DOI:10.1371/journal.pone.0023155] [PMID] [PMCID]
12. Huang J, Huen MS, Kim H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol. 2009;11(5):592-603. [DOI:10.1038/ncb1865] [PMID] [PMCID]
13. Iacoangeli A, Bianchi R, Tiedge H. Regulatory RNAs in brain function and disorders. Brain res J. 2010;1338:36-47. [DOI:10.1016/j.brainres.2010.03.042] [PMID] [PMCID]
14. Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry. 2003;18(S1):S15-S21. [DOI:10.1002/gps.934] [PMID]
15. Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neuroscie. 2010;30(13):4590-600. [DOI:10.1523/JNEUROSCI.0640-10.2010] [PMID] [PMCID]
16. Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement. 2018;14(10):1302-12. [DOI:10.1016/j.jalz.2018.05.017] [PMID] [PMCID]
17. Song X, Jensen MØ, Jogini V, et al. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 2018;556(7702):515-9. [DOI:10.1038/s41586-018-0039-9] [PMID] [PMCID]
18. Dominguez E, Chin TY, Chen CP, Wu TY. Management of moderate to severe Alzheimer's disease: Focus on memantine. Taiwan J Obstet Gynecol. 2011;50(4):415-23. [DOI:10.1016/j.tjog.2011.10.004] [PMID]
19. Azadfar P, Noormohammadi Z, Noroozian M, Eidi A, Mortazavi P. Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep. 2020:1-9. [DOI:10.1007/s11033-020-05629-7] [PMID]
20. Pxinos G, Watson C. The rat brain in stereotaxic coordinates. Har-court Brace Jovanovich, San Diego. 1986.
21. Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol. Neurobiol. 2016;53(3):1741-52. [DOI:10.1007/s12035-015-9132-3] [PMID] [PMCID]
22. Khalili M, Kiasalari Z, Rahmati B, Narenjkar J. Behavioral and histological analysis of Crocus sativus effect in intracerebroventricular streptozotocin model of Alzheimer disease in rats. Iran. J. Pathol. 2010;5(1):27-33.
23. Jayant S, Sharma BM, Bansal R, Sharma B. Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease. Pharmacol. Biochem. Behav. 2016;140:39-50. [DOI:10.1016/j.pbb.2015.11.006] [PMID]
24. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimer's Dis. 2006;9(1):13-33. [DOI:10.3233/JAD-2006-9102] [PMID]
25. Chen S, Liu AR, An FM, Yao WB, Gao XD. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease by exendin-4. Age. 2012;34(5):1211-24. [DOI:10.1007/s11357-011-9303-8] [PMID] [PMCID]
26. Suenaga T, Hirano A, Llena J, Yen SH, Dickson DW. Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer's disease. Acta Neuropathol. 1990;80(3):280-6. [DOI:10.1007/BF00294646] [PMID]
27. Deng Y, Xiao L, Li W, et al. Plasma long noncoding RNA 51A as a stable biomarker of Alzheimer's disease. Int J Clin Exp Pathol. 2017;10:4694-9.
28. La Rosa LR, Perrone L, Nielsen MS, Calissano P, Andersen OM, Matrone C. Y682G mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction. Front Cell Neurosci. 2015;9:109. [DOI:10.3389/fncel.2015.00109] [PMID] [PMCID]
29. Ma QL, Teter B, Ubeda OJ, et al. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention. J Neurosci. 2007;27(52):14299-307. [DOI:10.1523/JNEUROSCI.3593-07.2007] [PMID] [PMCID]
30. Willnow TE, Andersen OM. Sorting receptor SORLA-a trafficking path to avoid Alzheimer disease. J Cell Sci. 2013;126(13):2751-60. [DOI:10.1242/jcs.125393] [PMID]
31. Folch J, Busquets O, Ettcheto M, et al. Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis. 2018;62(3):1223-40. [DOI:10.3233/JAD-170672] [PMID] [PMCID]
32. Feng L, Liao YT, He JC, et al. Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol. 2018;18(1):4. [DOI:10.1186/s12883-017-1008-x] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb