1. Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303. [
DOI:10.1002/jgm.3303] [
PMID] [
PMID]
2. Eastin C, Eastin T. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med. 2020;58(4):711-2. [
DOI:10.1016/j.jemermed.2020.04.004] [
PMCID]
3. WHO COVID-19 Dashboard. Geneva: World Health Organization; 2020. Available online: https://covid19.who.int.
4. Li C, Chu H, Liu X, et al. Human coronavirus dependency on host heat shock protein 90 reveals an antiviral target. Emerg Microbes Infect. 2020;9(1):2663-72. [
DOI:10.1080/22221751.2020.1850183] [
PMID] [
PMCID]
5. Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci. 2022;9:938099. [
DOI:10.3389/fmolb.2022.938099] [
PMID] [
PMCID]
6. Danladi J, Sabir H. Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol. 2021;358:577632. [
DOI:10.1016/j.jneuroim.2021.577632] [
PMID] [
PMCID]
7. Wan Q, Song D, Li H, He M. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther. 2020;5(1):1-40. [
DOI:10.1038/s41392-020-00233-4] [
PMID] [
PMCID]
8. Heck TG, Ludwig MS, Frizzo MN, Rasia-Filho AA, De Bittencourt PIH. Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic research (inclusive bats), light on conceivable therapies. Clinical Science. Portland Press Ltd; 2020. p. 1991-2017. [
DOI:10.1042/CS20200596] [
PMID] [
PMCID]
9. Paladino L, Vitale AM, Caruso Bavisotto C, et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020;9(11):3518. [
DOI:10.3390/jcm9113518] [
PMID] [
PMCID]
10. Hall BG. Stress proteins as predictors of COVID-19 outcomes. Cell Stress Chaperones. 2021;26(2):287-8. [
DOI:10.1007/s12192-020-01186-x] [
PMID] [
PMCID]
11. Tedesco B, Cristofani R, Ferrari V, et al. Insights on human small heat shock proteins and their alterations in diseases. Front Mol Biosci. 2022;9:842149. [
DOI:10.3389/fmolb.2022.842149] [
PMID] [
PMCID]
12. Rajaiya J, Yousuf MA, Singh G, Stanish H, Chodosh J. Heat shock protein 27 mediated signaling in viral infection. Biochemistry. 2012;51(28):5695-702. [
DOI:10.1021/bi3007127] [
PMID] [
PMCID]
13. Zimmermann M, Traxler D, Bekos C, et al. Heat shock protein 27 as a predictor of prognosis in patients admitted to hospital with acute COPD exacerbation. Cell Stress Chaperones. 2020;25(1):141-9. [
DOI:10.1007/s12192-019-01057-0] [
PMID] [
PMCID]
14. Li X, Ma R, Wu B, et al. HSP27 protein dampens encephalomyocarditis virus replication by stabilizing melanoma differentiation-associated gene 5. Front Microbiol. 2021;12. [
DOI:10.3389/fmicb.2021.788870] [
PMID] [
PMCID]
15. O'Brien ERER, Sandhu JKJK. Sex differences in COVID-19 mortality: opportunity to develop HSP27 (HSPB1) immunotherapy to treat hyper-inflammation? Cell Stress Chaperones. 2020;25(5):725-9. [
DOI:10.1007/s12192-020-01146-5] [
PMID] [
PMCID]
16. Hightower LE, Santoro MG. Coronaviruses and stress: from cellular to global. Cell Stress Chaperones. 2020;25:701-5. [
DOI:10.1007/s12192-020-01155-4] [
PMID] [
PMCID]
17. World Health Organization. Clinical management of COVID-19: living guideline, 2023. Available from: [
https://apps.who.int/iris/handle/10665/365580]
18. Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019;498:90-100. [
DOI:10.1016/j.cca.2019.08.015] [
PMID]
19. Tong S, Yang Y, Hu H, et al. HSPB1 is an intracellular antiviral factor against hepatitis B virus. J Cell Biochem. 2013;114(1):162-73. [
DOI:10.1002/jcb.24313] [
PMID]
20. Dan X, Wan Q, Yi L, et al. Hsp27 responds to and facilitates enterovirus A71 replication by enhancing viral internal ribosome entry site-mediated translation. J Virol. 2019;93(9):e02322-18. [
DOI:10.1128/JVI.02322-18] [
PMID] [
PMCID]
21. Sun M, Yu Z, Ma J, Pan Z, Lu C, Yao H. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism. Vet Microbiol. 2017;205:6-13. [
DOI:10.1016/j.vetmic.2017.04.031] [
PMID]
22. Finkel Y, Gluck A, Winkler R, et al. SARS-CoV-2 utilizes a multipronged strategy to suppress host protein synthesis. BioRxiv. 2020;2011-20. [
DOI:10.1101/2020.11.25.398578]
23. Banerjee AK, Blanco MR, Bruce EA, et al. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell. 2020;183(5):1325-1339.e21. [
DOI:10.1016/j.cell.2020.10.004] [
PMID] [
PMCID]
24. Thonel A de, Mouël A Le, Biology VM of biochemistry & cell, 2012 U. Transcriptional regulation of small HSP-HSF1 and beyond. Elsevier. 2012;44(10):1593-612. [
DOI:10.1016/j.biocel.2012.06.012] [
PMID]
25. Gadotti AC, de Castro Deus M, Telles JP, et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020;289:198171. [
DOI:10.1016/j.virusres.2020.198171] [
PMID] [
PMCID]
26. Wendt R, Lingitz M-T, Laggner M, et al. Clinical relevance of elevated soluble ST2, HSP27 and 20S proteasome at hospital admission in patients with COVID-19. Biology (Basel). 2021;10(11):1186. [
DOI:10.3390/biology10111186] [
PMID] [
PMCID]
27. Tian M, Zhu L, Lin H, et al. Hsp-27 levels and thrombus burden relate to clinical outcomes in patients with ST-segment elevation myocardial infarction. Oncotarget. 2017;8(43):73733-44. [
DOI:10.18632/oncotarget.17852] [
PMID] [
PMCID]
28. Polanowska-Grabowska R, Gear AR. Heat-shock proteins and platelet function. Platelets. 2000;11(1):6-22. [
DOI:10.1080/09537100075742] [
PMID]
29. Wainberg Z, Oliveira M, Lerner S, Tao Y, Brenner BG. Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology. 1997;233(2):364-73. [
DOI:10.1006/viro.1997.8618] [
PMID]
30. Arrigo AP. Analysis of HspB1 (Hsp27) oligomerization and phosphorylation patterns and its interaction with specific client polypeptides BT - Chaperones: Methods and Protocols. In: Calderwood SK, Prince TL, editors. Chaperones. New York, NY: Springer New York; 2018. p. 163-78. [
DOI:10.1007/978-1-4939-7477-1_12] [
PMID]
31. Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-Vpr activities of heat shock protein 27. Mol Med. 2007;13(5-6):229-39. [
DOI:10.2119/2007-00004.Liang] [
PMID] [
PMCID]
32. Nahomi RB, Palmer A, Green KM, Fort PE, Nagaraj RH. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta (BBA)-Molecular Basis Dis. 2014;1842(2):164-74. [
DOI:10.1016/j.bbadis.2013.11.011] [
PMID] [
PMCID]