دوره ۳۱، شماره ۱۴۹ - ( ۱۰-۱۴۰۲ )                   جلد ۳۱ شماره ۱۴۹ صفحات ۵۷۳-۵۶۷ | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi F, Salehi M, Arsang-Jang S, Mohammadzadeh A. The Correlation between HSP27 Protein Levels and Gene Expression with Symptoms Severity in COVID-19 Patients. J Adv Med Biomed Res 2023; 31 (149) :567-573
URL: http://journal.zums.ac.ir/article-1-7276-fa.html
The Correlation between HSP۲۷ Protein Levels and Gene Expression with Symptoms Severity in COVID-۱۹ Patients. Journal of Advances in Medical and Biomedical Research. ۱۴۰۲; ۳۱ (۱۴۹) :۵۶۷-۵۷۳

URL: http://journal.zums.ac.ir/article-۱-۷۲۷۶-fa.html


چکیده:   (۱۵۱۴ مشاهده)

Background and Objective: Heat shock proteins (HSPs) have garnered significant interest as a potential host factor in COVID-19. By exerting control over HSP levels, the invading virus can effectively manipulate the destiny of host cells, capitalizing on their essential roles in cellular pathways and viral life cycles. Within this investigation, we present novel findings elucidating the variations in HSP27 protein and mRNA expression between patients exhibiting mild symptoms and those manifesting moderate-to-severe symptoms of COVID-19, juxtaposed against a control cohort.
Materials and Methods: A total of 102 patient samples were included in the study, comprising 54 individuals with moderate-to-severe COVID-19 symptoms and 48 with mild symptoms. Additionally, 42 samples from healthy individuals constituted the control group. HSP27 protein levels were quantified using ELISA, while the transcript content was assessed using Real-Time PCR.
Results: Our initial findings revealed a statistically significant reduction in serum HSP27 levels among patients displaying mild COVID-19 symptoms when compared to the control group (P< 0.05). Nonetheless, this disparity did not achieve statistical significance in patients with moderate-to-severe symptoms. In contrast, the transcriptomic profile of HSP27 exhibited striking similarity across all groups, including mild, moderate-to-severe, and controls (P=0.25 and P=0.56, respectively).
Conclusion: The present study, to date, is the first to investigate HSP27 gene expression levels in COVID-19 patients. Conducting further studies on HSP27 is of considerable help to clarify the importance of this molecule in SARS-CoV-2 infection.

متن کامل [PDF 542 kb]   (۳۲۵ دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: Medical Biology
دریافت: 1402/4/7 | پذیرش: 1402/6/18 | انتشار: 1402/11/9

فهرست منابع
1. Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303. [DOI:10.1002/jgm.3303] [PMID] [PMID]
2. Eastin C, Eastin T. Clinical characteristics of coronavirus disease 2019 in China. J Emerg Med. 2020;58(4):711-2. [DOI:10.1016/j.jemermed.2020.04.004] [PMCID]
3. WHO COVID-19 Dashboard. Geneva: World Health Organization; 2020. Available online: https://covid19.who.int.
4. Li C, Chu H, Liu X, et al. Human coronavirus dependency on host heat shock protein 90 reveals an antiviral target. Emerg Microbes Infect. 2020;9(1):2663-72. [DOI:10.1080/22221751.2020.1850183] [PMID] [PMCID]
5. Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci. 2022;9:938099. [DOI:10.3389/fmolb.2022.938099] [PMID] [PMCID]
6. Danladi J, Sabir H. Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol. 2021;358:577632. [DOI:10.1016/j.jneuroim.2021.577632] [PMID] [PMCID]
7. Wan Q, Song D, Li H, He M. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther. 2020;5(1):1-40. [DOI:10.1038/s41392-020-00233-4] [PMID] [PMCID]
8. Heck TG, Ludwig MS, Frizzo MN, Rasia-Filho AA, De Bittencourt PIH. Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: Lessons from basic research (inclusive bats), light on conceivable therapies. Clinical Science. Portland Press Ltd; 2020. p. 1991-2017. [DOI:10.1042/CS20200596] [PMID] [PMCID]
9. Paladino L, Vitale AM, Caruso Bavisotto C, et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020;9(11):3518. [DOI:10.3390/jcm9113518] [PMID] [PMCID]
10. Hall BG. Stress proteins as predictors of COVID-19 outcomes. Cell Stress Chaperones. 2021;26(2):287-8. [DOI:10.1007/s12192-020-01186-x] [PMID] [PMCID]
11. Tedesco B, Cristofani R, Ferrari V, et al. Insights on human small heat shock proteins and their alterations in diseases. Front Mol Biosci. 2022;9:842149. [DOI:10.3389/fmolb.2022.842149] [PMID] [PMCID]
12. Rajaiya J, Yousuf MA, Singh G, Stanish H, Chodosh J. Heat shock protein 27 mediated signaling in viral infection. Biochemistry. 2012;51(28):5695-702. [DOI:10.1021/bi3007127] [PMID] [PMCID]
13. Zimmermann M, Traxler D, Bekos C, et al. Heat shock protein 27 as a predictor of prognosis in patients admitted to hospital with acute COPD exacerbation. Cell Stress Chaperones. 2020;25(1):141-9. [DOI:10.1007/s12192-019-01057-0] [PMID] [PMCID]
14. Li X, Ma R, Wu B, et al. HSP27 protein dampens encephalomyocarditis virus replication by stabilizing melanoma differentiation-associated gene 5. Front Microbiol. 2021;12. [DOI:10.3389/fmicb.2021.788870] [PMID] [PMCID]
15. O'Brien ERER, Sandhu JKJK. Sex differences in COVID-19 mortality: opportunity to develop HSP27 (HSPB1) immunotherapy to treat hyper-inflammation? Cell Stress Chaperones. 2020;25(5):725-9. [DOI:10.1007/s12192-020-01146-5] [PMID] [PMCID]
16. Hightower LE, Santoro MG. Coronaviruses and stress: from cellular to global. Cell Stress Chaperones. 2020;25:701-5. [DOI:10.1007/s12192-020-01155-4] [PMID] [PMCID]
17. World Health Organization. Clinical management of COVID-19: living guideline, 2023. Available from: [https://apps.who.int/iris/handle/10665/365580]
18. Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019;498:90-100. [DOI:10.1016/j.cca.2019.08.015] [PMID]
19. Tong S, Yang Y, Hu H, et al. HSPB1 is an intracellular antiviral factor against hepatitis B virus. J Cell Biochem. 2013;114(1):162-73. [DOI:10.1002/jcb.24313] [PMID]
20. Dan X, Wan Q, Yi L, et al. Hsp27 responds to and facilitates enterovirus A71 replication by enhancing viral internal ribosome entry site-mediated translation. J Virol. 2019;93(9):e02322-18. [DOI:10.1128/JVI.02322-18] [PMID] [PMCID]
21. Sun M, Yu Z, Ma J, Pan Z, Lu C, Yao H. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism. Vet Microbiol. 2017;205:6-13. [DOI:10.1016/j.vetmic.2017.04.031] [PMID]
22. Finkel Y, Gluck A, Winkler R, et al. SARS-CoV-2 utilizes a multipronged strategy to suppress host protein synthesis. BioRxiv. 2020;2011-20. [DOI:10.1101/2020.11.25.398578]
23. Banerjee AK, Blanco MR, Bruce EA, et al. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell. 2020;183(5):1325-1339.e21. [DOI:10.1016/j.cell.2020.10.004] [PMID] [PMCID]
24. Thonel A de, Mouël A Le, Biology VM of biochemistry & cell, 2012 U. Transcriptional regulation of small HSP-HSF1 and beyond. Elsevier. 2012;44(10):1593-612. [DOI:10.1016/j.biocel.2012.06.012] [PMID]
25. Gadotti AC, de Castro Deus M, Telles JP, et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020;289:198171. [DOI:10.1016/j.virusres.2020.198171] [PMID] [PMCID]
26. Wendt R, Lingitz M-T, Laggner M, et al. Clinical relevance of elevated soluble ST2, HSP27 and 20S proteasome at hospital admission in patients with COVID-19. Biology (Basel). 2021;10(11):1186. [DOI:10.3390/biology10111186] [PMID] [PMCID]
27. Tian M, Zhu L, Lin H, et al. Hsp-27 levels and thrombus burden relate to clinical outcomes in patients with ST-segment elevation myocardial infarction. Oncotarget. 2017;8(43):73733-44. [DOI:10.18632/oncotarget.17852] [PMID] [PMCID]
28. Polanowska-Grabowska R, Gear AR. Heat-shock proteins and platelet function. Platelets. 2000;11(1):6-22. [DOI:10.1080/09537100075742] [PMID]
29. Wainberg Z, Oliveira M, Lerner S, Tao Y, Brenner BG. Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology. 1997;233(2):364-73. [DOI:10.1006/viro.1997.8618] [PMID]
30. Arrigo AP. Analysis of HspB1 (Hsp27) oligomerization and phosphorylation patterns and its interaction with specific client polypeptides BT - Chaperones: Methods and Protocols. In: Calderwood SK, Prince TL, editors. Chaperones. New York, NY: Springer New York; 2018. p. 163-78. [DOI:10.1007/978-1-4939-7477-1_12] [PMID]
31. Liang D, Benko Z, Agbottah E, Bukrinsky M, Zhao RY. Anti-Vpr activities of heat shock protein 27. Mol Med. 2007;13(5-6):229-39. [DOI:10.2119/2007-00004.Liang] [PMID] [PMCID]
32. Nahomi RB, Palmer A, Green KM, Fort PE, Nagaraj RH. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta (BBA)-Molecular Basis Dis. 2014;1842(2):164-74. [DOI:10.1016/j.bbadis.2013.11.011] [PMID] [PMCID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Journal of Advances in Medical and Biomedical Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb