Volume 28, Issue 129 (July & August 2020)                   J Adv Med Biomed Res 2020, 28(129): 175-182 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostamkhani H, Karimimoghaddam A, Hejazi J, Chiti H, Mellati A A. Correlation of Plasma RBP4-to-Vitamin A Ratio with Severity of Diabetic Retinopathy. J Adv Med Biomed Res 2020; 28 (129) :175-182
URL: http://journal.zums.ac.ir/article-1-5942-en.html
1- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
2- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran , mellati@zums.ac.ir
Abstract:   (143416 Views)

Background & Objective: Diabetic retinopathy (DR) is a common microvascular complication of type 2 diabetes mellitus (T2DM) and the leading cause of vision loss in working-age adults. Vitamin A (retinol) has a role in the mechanism of vision process and retinol binding protein-4 (RBP4), is a carrier of vitamin A, and as an adipokine may be associated with increased risk for insulin resistance and DR. This case-control study was aimed to determine and analyze plasma RBP4-to-vitamin A ratio in relation with terms of DR severity.
Materials & Methods: In the present analytical cross-sectional study, 51 T2DM patients, aged 48-73 years old, were enrolled from those attending to the Ophthalmology Center of Vali-e Asr Hospital, Zanjan, Iran. Patients were categorized as non-retinopathy diabetic patients (NRDP) without any eye problem, those with mild non-proliferative DR (mild NPDR) (n=12), those with severe non-proliferative diabetic retinopathy (severe NPDR) (n=12), and those with proliferative DR (PDR) (n=12); a control group (n=15) was also considered. Anthropometric parameters, BMI, and WHR were determined and blood sample weas taken from each participant after overnight fasting (12-14h) to measure their biochemical parameters. Serum RBP4 and vitamin A levels were measured via ELISA and C18 reverse-phase HPLC methods, respectively.
Results: Plasma RBP4 concentration was significantly higher in three different stages of DR than that of the control group suffering from diabetes (77.0±11.0, 81.7±10.9 and 88.3±11.9 vs. 71.4±12.3, respectively; P=0.004). The ratio of plasma RBP4-to-retinol in DR groups was found to be significantly higher than that in the control group suffering from diabetes (0.21±0.06, 0.27±0.12 and 0.28±0.07 vs. 0.16±0.14, respectively; P=0.001).
Conclusion: Higher plasma RBP4-to-vitamin A ratio was related to DR severity. Further experimental studies with larger scales are recommended.

Full-Text [PDF 336 kb]   (155209 Downloads) |   |   Full-Text (HTML)  (3788 Views)  

Higher plasma RBP4-to-vitamin A ratio was related to DR severity. Further experimental studies with larger scales are recommended.


Type of Study: Original Article | Subject: Medical Biology
Received: 2020/03/2 | Accepted: 2020/07/15 | Published: 2020/08/11

References
1. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabet. 2008;26(2):77-82. [DOI:10.2337/diaclin.26.2.77]
2. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet (London, England). 2010;376(9735):124-36. [DOI:10.1016/S0140-6736(09)62124-3]
3. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260-77. [DOI:10.1111/ceo.12696]
4. Rodríguez ML, Pérez S, Mena-Mollá S, Desco MC, Ortega ÁL. Oxidative stress and microvascular alterations in diabetic retinopathy: Future Therapies. Oxidat Med Cell Long.2019; 2019:1-18 [DOI:10.1155/2019/4940825]
5. Maroufizadeh S, Almasi-Hashiani A, Hosseini M, Sepidarkish M, Samani RO. Prevalence of diabetic retinopathy in Iran: a systematic review and Meta-analysis. Int J of Ophthalmol. 2017;10(5):782-802.
6. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902-16. [DOI:10.1001/jama.298.8.902]
7. Santiago AR, Boia R, Aires ID, Ambrósio AF, Fernandes R. Sweet stress: coping with vascular dysfunction in diabetic retinopathy. Front Physiol. 2018;9 (16):820-841. [DOI:10.3389/fphys.2018.00820]
8. Mitsch C, Fehre K, Prager S, et al. Clinical decision support for the classification of diabetic retinopathy: A comparison of manual and automated results.Stud Health Technol Inform. 2016;223:17-24.
9. Fong DS, Aiello L, Gardner TW, et al. Diabetic retinopathy. Diabetes Care. 2003;26(suppl 1):99-102. [DOI:10.2337/diacare.26.2007.S99]
10. Simó-Servat O, Simó R, Hernández C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diabet Res. 2016;320-33. [DOI:10.1155/2016/5263798]
11. Mahajan N, Arora P, Sandhir R. Perturbed biochemical pathways and associated oxidative stress lead to vascular dysfunctions in diabetic retinopathy. Oxidat Med Cell Long. 2019;2019:1- 16 [DOI:10.1155/2019/8458472]
12. Von Eynatten M, Humpert PM. Retinol-binding protein-4 in experimental and clinical metabolic disease. Expert Rev Molec Diag. 2008;8(3):289-99. [DOI:10.1586/14737159.8.3.289]
13. Christou G, Tselepis A, Kiortsis D. The metabolic role of retinol binding protein 4: an update. Hormone Metab Res. 2012;44(01):6-14. [DOI:10.1055/s-0031-1295491]
14. Pullakhandam R, Palika R, Ghosh S, Reddy GB. Contrasting effects of type 2 and type 1 diabetes on plasma RBP4 levels: the significance of transthyretin. IUBMB Life. 2012;64(12):975-82.
15. Kelly M, Widjaja-Adhi MAK, Palczewski G, von Lintig J. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. FASEB J. 2016;30(8):2985-95. [DOI:10.1096/fj.201600446R]
16. Nair AK, Sugunan D, Kumar H, Anilkumar G. Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: Association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS One. 2010; 5(7): e11444. [DOI:10.1371/journal.pone.0011444]
17. Graham TE, Yang Q, Blüher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. New Eng J Med. 2006;354(24):2552-63. [DOI:10.1056/NEJMoa054862]
18. Kwanbunjan K, Panprathip P, Phosat C, et al. Association of retinol binding protein 4 and transthyretin with triglyceride levels and insulin resistance in rural thais with high type 2 diabetes risk. BMC Endocrine Disorder. 2018;18(1):26-35. [DOI:10.1186/s12902-018-0254-2]
19. Mills JP, Furr HC, Tanumihardjo SA. Retinol to retinol-binding protein (RBP) is low in obese adults due to elevated apo-RBP. Experiment Biol Med.2008;233(10):1255-61. [DOI:10.3181/0803-RM-94]
20. Erikstrup C, Mortensen OH, Nielsen A, et al. RBP‐to‐retinol ratio, but not total RBP, is elevated in patients with type 2 diabetes. Diabetes, Obesit Metab. 2009;11(3):204-12. [DOI:10.1111/j.1463-1326.2008.00901.x]
21. Li Z, Lu X, Liu J, Chen L. Serum retinol-binding protein 4 levels in patients with diabetic retinopathy. J Int Med Res. 2010;38(1):95-9. [DOI:10.1177/147323001003800111]
22. Li JY, Chen XX, Lu XH, Zhang C-B, Shi Q-P, Feng L. Elevated RBP4 plasma levels were associated with diabetic retinopathy in type 2 diabetes. Biosci Rep.2018;38(5): BSR20181100 [DOI:10.1042/BSR20181100]
23. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab. 2007;92(7):2712-9. [DOI:10.1210/jc.2006-1249]
24. Akbay E, Muslu N, Nayır E, Ozhan O, Kiykim A. Serum retinol binding protein 4 level is related with renal functions in Type 2 diabetes. J Endocrinol Invest. 2010;33(10):725-9. [DOI:10.1007/BF03346678]
25. Daruwalla A, Choi EH, Palczewski K, Kiser PD. Structural biology of 11-cis-etinaldehyde production in the classical visual cycle. Biochem J. 2018;475(20):3171-88. [DOI:10.1042/BCJ20180193]
26. Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis. 2019;57(7- 8):e23308. [DOI:10.1002/dvg.23308]
27. Augustin A, Dick H, Koch F, Schmidt-Erfurth U. Correlation of blood-glucose control with oxidative metabolites in plasma and vitreous body of diabetic patients. Eur J Ophthal. 2002;12(2):94-101. [DOI:10.1177/112067210201200204]
28. Mirmiran P, Hosseini Esfahani F, Mehrabi Y, et al.Reliability and relative validity of an FFQ for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr. 2010; 13, 654-62. [DOI:10.1017/S1368980009991698]
29. Jellife D. The assessment of the nutritional status of the community. 1966;51:67-67.
30. Kim Y-K, Quadro L. Reverse-phase high-performance liquid chromatography (HPLC) analysis of retinol and retinyl esters in mouse serum and tissues. Retinoids: Springer; 2010;651(5): 263-75. [DOI:10.1007/978-1-60327-325-1_15]
31. Du M, Otalora L, Martin AA, et al. Transgenic mice overexpressing serum retinol-binding protein develop progressive retinal degeneration through a retinoid-independent mechanism. Molec Cell Biol. 2015;35(16):2771-89. [DOI:10.1128/MCB.00181-15]
32. Osman ZM, Gomaa AM, Hussein HM, Soliman FH, El-Shobaki AF. Association between retinal metabolism and diabetic retinopathy. Polish J Food Nutr Sci. 2004;13(4):391-6.
33. Rostamkhani H, Mellati AA, Tabaei BS, Alavi M, Mousavi SN. Association of serum zinc and vitamin A levels with severity of retinopathy in type 2 diabetic patients: a Cross-Sectional Study. Biol Trace Element Res. 2019;192(2):123-8. [DOI:10.1007/s12011-019-01664-z]
34. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma J-X. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase-and nuclear factor kappa B-dependent and retinol-independent mechanism. Molec Cell Biol. 2012;32(24):5103-15. [DOI:10.1128/MCB.00820-12]
35. Norseen J, Hosooka T, Hammarstedt A, et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase-and toll-like receptor 4-dependent and retinol-independent mechanism. Molec Cell Biol. 2012;32(10):2010-9. [DOI:10.1128/MCB.06193-11]
36. Fedders R, Muenzner M, Schupp M. Retinol binding protein 4 and its membrane receptors: a metabolic perspective. Hormone molecular biology and clinical investigation. 2015;22(1):27-37. [DOI:10.1515/hmbci-2015-0013]
37. Chang X, Yan H, Bian H, et al. Serum retinol binding protein 4 is associated with visceral fat in human with nonalcoholic fatty liver disease without known diabetes: a cross-sectional study. Lipid Health Dis. 2015;14(1):28. [DOI:10.1186/s12944-015-0033-2]
38. Karamfilova V, Gateva A, Alexiev A, et al. The association between retinol-binding protein 4 and prediabetes in obese patients with nonalcoholic fatty liver disease. Arch Physiol Biochem. 2019:1-6. [DOI:10.1080/13813455.2019.1673429]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb