Volume 29, Issue 133 (March & April 2021)                   J Adv Med Biomed Res 2021, 29(133): 74-82 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farhang Ranjbar M, Shahyad S, Namdar F, Noroozzadeh A, Bahari Z, Mohammadi M T. Assessing the Effects of Fullerene C60 on Markers of Oxidative Stress in the Testes of Streptozotocin-Induced Diabetic Rats. J Adv Med Biomed Res 2021; 29 (133) :74-82
URL: http://journal.zums.ac.ir/article-1-5966-en.html
1- Dept. of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
2- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. , Mohammadi.mohammadt@yahoo.com
Abstract:   (142791 Views)

 Background and Objective: Occurrence of oxidative stress in uncontrolled diabetes mellitus affects spermatogenesis and the testicular functions. As the promising antioxidant activities of fullerene C60 nanomaterial have been demonstrated by previous reports, the current study aimed to determine the fullerene C60 effects on the markers of oxidative stress damage in testes of streptozotocin-induced diabetes in rats.
 Materials and Methods: To perform the current study, 32 male Wistar rats were assigned to four groups (each group, n=8) as follows: two control (normal and diabetic) and two treated (normal and diabetic) groups. Streptozotocin at dose of 45 mg/kg (i.v. injection) was used to induce diabetes at the beginning of the test. Treated rats orally received fullerene C60 (1 mg/kg/day) for 8 weeks. The markers of oxidative stress damage were assessed in the testes at the end of the study, including malondialdehyde (MDA) and glutathione (GSH) contents as well as superoxide dismutase (SOD) and catalase (CAT) activities. One-way ANOVA and Tukey’s post-hoc test were used to analyze the data.
 Results: Blood glucose level was not altered in the fullerene-treated normal and diabetic animals. Diabetes induction increased MDA level, but decreased CAT activity in the testes of diabetic animals compared to the normal animals. Administering fullerene C60 significantly decreased MDA content and increased the activity of CAT in the testes of diabetic animals compared to the untreated diabetic rats. Fullerene C60 administration in normal animals also decreased the activity of SOD in the testes.  
 Conclusion: According to our findings, fullerene C60 nanoparticle could reduce oxidative stress damage in diabetic condition in the rat testicular tissue probably through potentiating the antioxidant defense system.

Full-Text [PDF 432 kb]   (154198 Downloads) |   |   Full-Text (HTML)  (2909 Views)  

✅ According to our findings, fullerene C60 nanoparticle could reduce oxidative stress damage in diabetic condition in the rat testicular tissue probably through potentiating the antioxidant defense system.


Type of Study: Original Article | Subject: Bionanotechnology
Received: 2020/04/8 | Accepted: 2020/09/10 | Published: 2020/12/4

References
1. Sajadi E, Dadras S, Bayat M, et al. Impaired spermatogenesis associated with changes in spatial arrangement of sertoli and spermatogonial cells following induced diabetes. J Cell Biochem. 2019;120(10):17312-25. [DOI:10.1002/jcb.28995]
2. Ding GL, Liu Y, Liu ME, et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948-53. [DOI:10.4103/1008-682X.150844]
3. Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Human Reproduc Update. 2018;24(1):86-105. [DOI:10.1093/humupd/dmx033]
4. Shi GJ, Li ZM, Zheng J, et al. Diabetes associated with male reproductive system damages: Onset of presentation, pathophysiological mechanisms and drug intervention. Biomed Pharmacother. 2017;90:562-74. [DOI:10.1016/j.biopha.2017.03.074]
5. La Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes mellitus and sperm parameters. J Androl. 2012;33(2):145-53. [DOI:10.2164/jandrol.111.013193]
6. Xu M, Dai D, Zhang Q, Cheng Y, Dai Y. Upregulated NADPH oxidase contributes to diabetic testicular complication and is relieved by strontium fructose 1, 6-diphosphate. Experiment Clin Endocrinol Diabet. 2010;118(07):459-65. [DOI:10.1055/s-0030-1248325]
7. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longevit. 2008;1(1):15-24. [DOI:10.4161/oxim.1.1.6843]
8. Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect Tissue Res. 2014;55(2):71-9. [DOI:10.3109/03008207.2013.877894]
9. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophysic Acta Gen Subj. 2017;1861(4):802-13. [DOI:10.1016/j.bbagen.2017.01.018]
10. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science (New York, NY). 1991;254(5035):1183-5. [DOI:10.1126/science.254.5035.1183]
11. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Injury. 2017;31(8):1142-50. [DOI:10.1080/02699052.2017.1300835]
12. Namadr F, Bahrami F, Bahari Z, Ghanbari B, Shahyad S, Mohammadi MT. Fullerene C60 nanoparticles decrease liver oxidative stress through increment of liver antioxidant capacity in streptozotocin-induced diabetes in rats. React Oxygen Spec. 2020;9(26):70-80 [DOI:10.20455/ros.2020.809]
13. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-9. [DOI:10.1021/ja00070a064]
14. Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene. Biomaterials. 2012;33(19):4936-46. [DOI:10.1016/j.biomaterials.2012.03.036]
15. Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol nanoparticles decrease blood-brain barrier interruption and brain edema during cerebral ischemia-reperfusion injury probably by reduction of interleukin-6 and matrix metalloproteinase-9 transcription. J Stroke Cerebrovasc Diseas. 2018;27(11):3053-65. [DOI:10.1016/j.jstrokecerebrovasdis.2018.06.042]
16. Elshater AA, Haridy MAM, Salman MMA, Fayyad AS, Hammad S. Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomed Pharmacother. 2018;97:53-9. [DOI:10.1016/j.biopha.2017.10.134]
17. Nimibofa A, Newton EA, Cyprain AY, Donbebe W. Fullerenes: synthesis and applications. J Mater Sci. 2018;7:22-33. [DOI:10.5539/jmsr.v7n3p22]
18. Takahashi M, Kato H, Doi Y, et al. Sub-acute oral toxicity study with fullerene C60 in rats. J Toxicol Sci. 2012;37(2):353-61. [DOI:10.2131/jts.37.353]
19. Pirmoradi L, Mohammadi MT, Safaei A, Mesbah F, Dehghani GA. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats? Iran Biomed J. 2014;18(3):173.
20. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [DOI:10.1016/S0076-6879(84)05016-3]
21. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85(2):337-41.
22. Tietz F. Enzymic method for quantitatve determination of nanogram amount of total and oxidized glutathione: applications to mammalian blood and other tissues. Biocham. 1969;27:502-22. [DOI:10.1016/0003-2697(69)90064-5]
23. Sergeeva V, Kraevaya O, Ershova E, et al. Antioxidant properties of fullerene derivatives depend on their chemical structure: a study of two fullerene derivatives on HELFs. Oxid Med Cell Longevit. 2019;2019. [DOI:10.1155/2019/4398695]
24. Nedzvetskii V, Pryshchepa I, Tykhomyrov A, Baydas G. Inhibition of reactive gliosis in the retina of rats with streptozotocin-induced diabetes under the action of hydrated C 60 fullerene. Neurophysiol. 2016;48(2):130-40. [DOI:10.1007/s11062-016-9579-5]
25. Han XX, Jiang YP, Liu N, et al. Protective effects of astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed Pharmacother. 2019;110:561-70. [DOI:10.1016/j.biopha.2018.12.012]
26. Zhu X, Guo F, Tang H, et al. Islet transplantation attenuating testicular injury in type 1 diabetic rats is associated with suppression of oxidative stress and inflammation via Nrf-2/HO-1 and NF-κB Pathways. J Diabet Res. 2019;2019: 8712492 [DOI:10.1155/2019/8712492]
27. Maremanda KP, Khan S, Jena G. Role of zinc supplementation in testicular and epididymal damages in diabetic rat: involvement of Nrf2, SOD1, and GPX5. Biolog Trace Element Res. 2016;173(2):452-64. [DOI:10.1007/s12011-016-0674-7]
28. Heit C, Marshall S, Singh S, et al. Catalase deletion promotes prediabetic phenotype in mice. Free Radical Biol Med. 2017;103:48-56. [DOI:10.1016/j.freeradbiomed.2016.12.011]
29. Martínez G, Popov I, Pérez G, et al. Contribution to characterization of oxidative stress in diabetic patients with macroangiopatic complication. Acta Farm Bonaerense. 2005;24(2):197-203.
30. Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radical Biol Med. 2009;47(6):786-93. [DOI:10.1016/j.freeradbiomed.2009.06.016]
31. Galvan YP, Alperovich I, Zolotukhin P, et al. Fullerenes as anti-aging antioxidants. Curr Aging Sci. 2017;10(1):56-67. [DOI:10.2174/1874609809666160921120008]
32. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 2016;15:378-90.
33. Osuna S, Swart M, Sola M. On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry (Weinheim an der Bergstrasse, Germany). 2010;16(10):3207-14. [DOI:10.1002/chem.200902728]
34. Darabi S, Mohammadi MT. Fullerol potentiates the brain antioxidant defense system and decreases γ-glutamyl transpeptidase (GGT) mRNA during cerebral ischemia/reperfusion injury. Europ J Nanomed. 2017;9(1):25-32. [DOI:10.1515/ejnm-2016-0024]
35. Sumi N, Chitra K. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquatic Toxicol. 2019;210:196-206. [DOI:10.1016/j.aquatox.2019.03.003]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb