Volume 28, Issue 129 (July & August 2020)                   J Adv Med Biomed Res 2020, 28(129): 204-211 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azad M, Mohammadi P, Bohlooli S, Mostafalou S. Protective Effect of Capparis spinosa Hydroalcoholic Extract on the Integrity of Rat Pancreatic Islets. J Adv Med Biomed Res 2020; 28 (129) :204-211
URL: http://journal.zums.ac.ir/article-1-5978-en.html
1- Dept. of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
2- Dept. of Physiology and Pharmacology, School of Medicine, Ardabil University of Medical sciences, Ardabil, Iran
3- Dept. of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran , s.mostafalou@gmail.com
Abstract:   (145939 Views)

Background and Objective: Capparis spinosa L. belongs to the Capparaceae family for which biological roles such as antioxidant, anti-inflammatory, and antidiabetic effects have been reported. Some active chemical groups including flavonoids, phenols, alkaloids, tannins, and minerals have been detected in these plants [Sci Rew1] . This study aimed to extract the C. spinosa alcoholic extract from different parts of the plant, measure the content of phenols and flavonoids, and evaluate the effects of bud extracts on the viability and oxidative state of the islets of Langerhans isolated from rat pancreas.
Materials and Methods: In this experimental setup, the hydroalcoholic extracts of different parts of the plant were obtained based on the maceration method. Folin-Ciocalteu and rutin were used as the standard reagents to measure phenols and flavonoids. The islets of Langerhans were isolated from the pancreas of male rats (n=16) and incubated for 24 hours. Then, the islets were exposed to the plant extract for 24 hours after which cellular viability and reactive oxygen species were measured.
Results: The C. spinosa bud alcoholic extract markedly increased the survival of the islet cells. This effect was dose-dependent, and the greatest effects were observed at103 and 104 μgmL-1. At the mentioned concentrations, ROS production was reduced by 37% and 72% respectively comparing to the control.
Conclusion: The results indicated that C. spinose may have protective effects on the endocrine pancreas by increasing viability and decreasing ROS in the islets, and can thus be considered as a promising agent for prophylaxis and therapy in diabetes management.

Full-Text [PDF 577 kb]   (155109 Downloads) |   |   Full-Text (HTML)  (2759 Views)  

The results indicated that C. spinose may have protective effects on the endocrine pancreas by increasing viability and decreasing ROS in the islets, and can thus be considered as a promising agent for prophylaxis and therapy in diabetes management.


Type of Study: Original Article | Subject: Pharmacology
Received: 2020/04/18 | Accepted: 2020/07/15 | Published: 2020/08/11

References
1. Zhang HN, He JH, Yuan L, Lin ZB. In vitro and in vivo protective effect of Ganodermalucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci. 2003;73(18): 2307-19. [DOI:10.1016/S0024-3205(03)00594-0]
2. Sasso FC, De Nicola L, Carbonara O, et al. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(3): 498-503. [DOI:10.2337/diacare.29.03.06.dc05-1776]
3. Cho NH , Shaw JE, Karuranga S , et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res ClinPrac. 2018; 138: 271-281. [DOI:10.1016/j.diabres.2018.02.023]
4. Abdollahi M, Moridani MY, Aruoma OI, Mostafalou S. Oxidative stress in aging. Oxid Med Cell Longev. 2014;2014. [DOI:10.1155/2014/876834]
5. Prakash D, Suri S, Upadhyay G, Singh BN. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food SciNutr. 2007;58(1): 18-28. [DOI:10.1080/09637480601093269]
6. Rahimifard M, Navaii-Nigjeh M, Nilli-Ahmadabadi A, et al. On the benefit of pure glycyrrhizic acid on the function and metabolic activity of isolated pancreatic Langerhans islets in vitro. Asian J Anim Vet Adv; 2012;7(11): 1212-8. [DOI:10.3923/ajava.2012.1212.1218]
7. Chen C, Pearson A, Gray J. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chem. 1992;43(3): 177-83. [DOI:10.1016/0308-8146(92)90170-7]
8. Grover J, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;81(1): 81-100. [DOI:10.1016/S0378-8741(02)00059-4]
9. Mousavi SH, Hosseini A, Bakhtiari E, Rakhshandeh H. Capparisspinosa reduces doxorubicin-induced cardio-toxicity in cardiomyoblast cells. Avicenna J Phytomed. 2016;6(5): 488.
10. Rahnavard R, Razavi N. A review on the medical effects of Capparisspinosa L. Adv Herb Med. 2016;2(1): 44-53.
11. Meot-Duros L, Magne C. Antioxidant activity and phenol content of Crithmummaritimum L. leaves. Plant PhysiolBiochem. 2009;47(1): 37-41. [DOI:10.1016/j.plaphy.2008.09.006]
12. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50(6): 1619-24. [DOI:10.1021/jf010964p]
13. Zhao L, Liu W, Xiong S, et al. Determination of total flavonoids contents and antioxidant activity of Ginkgo biloba leaf by near-infrared reflectance method. Int J Anal Chem. 2018; 2018: 8195784. [DOI:10.1155/2018/8195784]
14. Kumaran A, Karunakaran RJ. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food SciTechnol. 2007;40(2): 344-52. [DOI:10.1016/j.lwt.2005.09.011]
15. Mohammadi P, Rahimifard M, Baeeri M, Abdollahi M, Mostafalou S. Mechanistic assessment of cadmium toxicity in association with the functions of estrogen receptors in the Langerhans islets. Iran J Basic Med Sci. 2019;22(4): 445-51.
16. Mostafalou S, Baeeri M, Bahadar H, Gholami M, Abdollahi M. Molecular mechanisms involved in lead induced disruption of hepatic and pancreatic glucose metabolism. Environ ToxicolPharmacol. 2015;39(1): 16-26. [DOI:10.1016/j.etap.2014.11.001]
17. Nili-Ahmadabadi A, Pourkhalili N, Fouladdel S,, et al. On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pest Biochem Physiol. 2013;106(1-2): 51-60. [DOI:10.1016/j.pestbp.2013.04.003]
18. Bahadar H, Mostafalou S, Abdollahi M. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides. J Diabetes MetabDisord. 2014;13(1): 117 [DOI:10.1186/s40200-014-0117-y]
19. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases; evidences, mechanisms, and perspectives. ToxicolApplPharmacol. 2013;268(2): 157-77 [DOI:10.1016/j.taap.2013.01.025]
20. Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91(2): 549-599. [DOI:10.1007/s00204-016-1849-x]
21. Mostafalou S, Abdollahi M. The role of environmental pollution of pesticides in human diabetes. Int J Pharmacol. 2012;8(2): 139-140 [DOI:10.3923/ijp.2012.139.140]
22. Astaneie F, Afshari M, Mojtahedi A. Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients. Arch Med Res. 2005;36(4): 376-381. [DOI:10.1016/j.arcmed.2005.03.007]
23. Kaneto H, Katakami N, Kawamori D, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9(3): 355-66. [DOI:10.1089/ars.2006.1465]
24. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem. 2002;277(33): 30010-8. [DOI:10.1074/jbc.M202066200]
25. Mostafalou S, Eghbal MA, Nili-Ahmadabadi A, Baeeri M, Abdollahi M. Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. ToxicolInd Health. 2012;28(9): 840-851 [DOI:10.1177/0748233711425073]
26. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5): 270-8. [DOI:10.4161/oxim.2.5.9498]
27. Germano MP, De Pasquale R, D'angelo V, Catania S, Silvari V, Costa C. Evaluation of extracts and isolated fraction from Capparisspinosa L. buds as an antioxidant source. J Agric Food Chem. 2002;50(5): 1168-71. [DOI:10.1021/jf010678d]
28. Mishra P, Panda P, Chowdary K, Panigrahi S. Antidiabetic and antihyperlipidemic activity of Capparisspinosa extract. Int J Pharm Sci Rev Res. 2012;14(1): 38-43.
29. Eddouks M, Lemhadri A, Michel JB. Hypolipidemic activity of aqueous extract of Capparisspinosa L. in normal and diabetic rats. J Ethnopharmacol. 2005;98: 345-350. [DOI:10.1016/j.jep.2005.01.053]
30. Kazemian M, Haeri MR, Ebrahimi M, Heidari R. Anti-diabetic effect of Capparisspinosa L. root extract in diabetic rats. Avicenna J Phytomed. 2015;5(4): 325-32.
31. Lemhadri A, Eddouks M, Sulpice T, Burcelin R. Anti-hyperglycaemic and anti-obesity effects of Capparisspinosa and Chamaemelumnobile Aqueous extracts in HFD Mice. American J PharmacolToxicol. 2007;2(3): 106-110. [DOI:10.3844/ajptsp.2007.106.110]
32. Rahmani R, Mahmoodi M, Karimi M, Hosseini F, Heydari R, Salehi M, Yousefi A. Effect of hydroalcoholic extract of CapparisSpinosa fruit on blood sugar and lipid profile of diabetic and normal rats. Zahedan J Res Med Sci. 2013;15(11): 34-38.
33. Oudah SK, Al-Salih RMH, Gusar SH. Study the role of polyphenolic extract of CapparisSpinosa L. leaves as a hypoglycemic agent. Int J SciEng Res. 2014;5(5): 1561-75.
34. Selfayan M, Namjooyan F. Inhibitory effect of Capparisspinosa extract on pancreatic alpha-amylase activity. Zahedan J Res Med Sci. 2016;18(4): e6450 [DOI:10.17795/zjrms-6450]
35. Taghavi M, Nazari M, Rahmani R, et al. Outcome of Capparisspinosa fruit extracts treatment on liver, kidney, pancreas and stomach tissues in normal and diabetic rats. Med chem. 2014;4: 717-21. [DOI:10.4172/2161-0444.1000218]
36. Zhou H, Jian R, Kang J, et al. Anti-inflammatory effects of caper (C. spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J Agric Food Chem. 2010; 58(24): 12717-21.  [DOI:10.1021/jf1034114]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb