Volume 29, Issue 137 (November & December 2021)                   J Adv Med Biomed Res 2021, 29(137): 339-345 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jokar M H, Sedighi S, Moradzadeh M. Differentiation-Inducing Activity of the Phyto-polyphenols Epigallocatechin-3-gallate and Kaempferol on NB4 Cells. J Adv Med Biomed Res 2021; 29 (137) :339-345
URL: http://journal.zums.ac.ir/article-1-6180-en.html
1- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
2- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran , moradzadeh63@yahoo.com
Abstract:   (118073 Views)

Background and Objective: The rate of survival in acute promyelocytic leukemia (APL) can dramatically improve, if the patients receive all-trans-retinoic acid (ATRA) treatment. However, this drug's toxicity is a major problem in APL treatment. Previous researches have demonstrated that phyto-polyphenols such as epigallocatechin gallate (EGCG) and kaempferol cause apoptosis in hematopoietic neoplasms, but do not negatively impact healthy cells. The present study compared the differentiation effects of kaempferol and EGCG, as well as ATRA in NB4 leukemia cells during five days.
Materials and Methods: Herein, kaempferol and EGCG's differentiation-inducing activity was examined by NBT assay and Real-time PCR in leukemia NB4 cells.
Results: EGCG (25 µM) and kaempferol (50 µM) induced the NB4 cells' differentiation, towards a granulocytic pattern similar to ATRA (1 μM). EGCG further suppressed PML/RARα clinical marker's expression compared to kaempferol, it also decreased HDAC1 expression in leukemia NB4 cells.
Conclusion: Based on this study, compared to kaempferol, EGCG at low concentrations is preferred for long-term ATRA therapy in APL patients.

Full-Text [PDF 598 kb]   (116869 Downloads) |   |   Full-Text (HTML)  (1709 Views)  

✅ Based on this study, compared to kaempferol, EGCG at low concentrations is preferred for long-term ATRA therapy in APL patients.


Type of Study: Original Article | Subject: Life science
Received: 2020/10/19 | Accepted: 2021/02/25 | Published: 2021/08/1

References
1. Adams J, Nassiri M. Acute promyelocytic leukemia: a review and discussion of variant translocations. Arch Pathol Lab Med. 2015;139(10):1308-13. [DOI:10.5858/arpa.2013-0345-RS]
2. Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol. 2014;27(1):3-9. [DOI:10.1016/j.beha.2014.04.006]
3. Minucci S, Nervi C, Coco FL, Pelicci PG. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene. 2001;20(24):3110. [DOI:10.1038/sj.onc.1204336]
4. Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol. 2013;97(6):717-25. [DOI:10.1007/s12185-013-1354-4]
5. Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer. 2003;3(10):768-80. [DOI:10.1038/nrc1189]
6. Moradzadeh M, Roustazadeh A, Tabarraei A, Erfanian S, Sahebkar A. Epigallocatechin‐3‐gallate enhances differentiation of acute promyelocytic leukemia cells via inhibition of PML‐RARα and HDAC1. Phytother Res. 2018;32(3):471-9. [DOI:10.1002/ptr.5990]
7. Moradzadeh M, Tabarraei A, Sadeghnia HR, et al. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J Cell Biochem. 2018;119(2):2288-97. [DOI:10.1002/jcb.26391]
8. Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol Reports. 2017;69(5):924-8. [DOI:10.1016/j.pharep.2017.04.008]
9. Kashafi E, Moradzadeh M, Mohamadkhani A, Erfanian S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed Pharmacother. 2017;89:573-7. [DOI:10.1016/j.biopha.2017.02.061]
10. Moradzadeh M, Tayebi S, Poustchi H, et al. The possible role of TLR2 in chronic hepatitis B patients with precore mutation. Adv Virol. 2013;2013. [DOI:10.1155/2013/780319]
11. Samodien S, Kock Md, Joubert E, Swanevelder S, Gelderblom WC. Differential cytotoxicity of rooibos and green tea extracts against primary rat hepatocytes and human liver and colon cancer cells-causal role of major flavonoids. Nutr Cancer. 2020:1-15. [DOI:10.1080/01635581.2020.1820054]
12. Kawasaki BT, Hurt EM, Mistree T, Farrar WL. Targeting cancer stem cells with phytochemicals. Molec Intervent. 2008;8(4):174. [DOI:10.1124/mi.8.4.9]
13. Chow HS, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003;9(9):3312-9.
14. Wu KM, Ghantous H, Birnkrant DB. Current regulatory toxicology perspectives on the development of herbal medicines to prescription drug products in the United States. Food Chem Toxicol. 2008;46(8):2606-10. [DOI:10.1016/j.fct.2008.05.029]
15. Liang K, Bae KH, Nambu A, et al. A two-pronged anti-leukemic agent based on a hyaluronic acid-green tea catechin conjugate for inducing targeted cell death and terminal differentiation. Biomater Sci. 2020;8(1):497-505. [DOI:10.1039/C9BM01146C]
16. Otsuka T, Ogo T, Eto T, Asano Y, Suganuma M, Niho Y. Growth inhibition of leukemic cells by (−)-epigallocatechin gallate, the main constituent of green tea. Life Sci. 1998;63(16):1397-403. [DOI:10.1016/S0024-3205(98)00406-8]
17. Li H, Yang L, Zhang Y, Gao Z. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I. Biomed Pharmacother. 2016;83:967-74. [DOI:10.1016/j.biopha.2016.08.011]
18. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099-107. [DOI:10.1016/j.foodchem.2012.11.139]
19. Kim SH, Choi KC. Anti-cancer effect and underlying mechanism (s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res. 2013;29(4):229. [DOI:10.5487/TR.2013.29.4.229]
20. Abdullah A, Talwar P, d'Hellencourt CL, Ravanan P. IRE 1α is critical for Kaempferol‐induced neuroblastoma differentiation. FEBS J. 2019;286(7):1375-92. [DOI:10.1111/febs.14776]
21. Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother. 2005;17(1):86-95. [DOI:10.1179/joc.2005.17.1.86]
22. Kanadaswami C, Lee L-T, Lee P-PH, et al. The antitumor activities of flavonoids. In Vivo. 2005;19(5):895-909.
23. Gupta K, Stefan T, Ignatz-Hoover J, et al. GSK-3 inhibition sensitizes acute myeloid leukemia cells to 1, 25D-mediated differentiation. Cancer Res. 2016;76(9):2743-53. [DOI:10.1158/0008-5472.CAN-15-2290]
24. Moradzadeh M, Ghorbani A, Erfanian S, et al. Study of the mechanisms of crocetin‐induced differentiation and apoptosis in human acute promyelocytic leukemia cells. J Cell Biochem. 2019;120(2):1943-57. [DOI:10.1002/jcb.27489]
25. Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As^ sub 2^ O3) in acute promyelocytic leukemia. Int J Hematol. 2013;97(6):717. [DOI:10.1007/s12185-013-1354-4]
26. Karthick T, Tandon P. Computational approaches to find the active binding sites of biological targets against busulfan. J Mol Model. 2016;22(6):1-9. [DOI:10.1007/s00894-016-3015-z]
27. Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A. Anti‐tumor effects of crocetin and related molecular targets. J Cell Physiol. 2017;233(3): 2170-182 [DOI:10.1002/jcp.25953]
28. Petrie K, Zelent A, Waxman S. Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol. 2009;16(2):84-91. [DOI:10.1097/MOH.0b013e3283257aee]
29. Lea MA, Xiao Q, Sadhukhan AK, Cottle S, Wang ZY, Yang CS. Inhibitory effects of tea extracts and (−)-epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett. 1993;68(2):231-6. [DOI:10.1016/0304-3835(93)90151-X]
30. Annabi B, Currie JC, Moghrabi A, Béliveau R. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res. 2007;31(9):1277-84. [DOI:10.1016/j.leukres.2006.10.001]
31. Huang AC, Cheng HY, Lin TS, et al. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T-and B-cells. In Vivo. 2013;27(5):627-34.
32. Britschgi A, Simon HU, Tobler A, Fey MF, Tschan MP. Epigallocatechin‐3‐gallate induces cell death in acute myeloid leukaemia cells and supports all‐trans retinoic acid‐induced neutrophil differentiation via death‐associated protein kinase 2. Br J Haematol. 2010;149(1):55-64. [DOI:10.1111/j.1365-2141.2009.08040.x]
33. Chokor R, Lamy S, Annabi B. Transcriptional targeting of sphingosine-1-phosphate receptor S1P2 by epigallocatechin-3-gallate prevents sphingosine-1-phosphate-mediated signaling in macrophage-differentiated HL-60 promyelomonocytic leukemia cells. Onco Targets Ther. 2014;7:667. [DOI:10.2147/OTT.S62717]
34. Vézina A, Chokor R, Annabi B. EGCG targeting efficacy of NF-κB downstream gene products is dictated by the monocytic/macrophagic differentiation status of promyelocytic leukemia cells. Cancer Immunol Immunother. 2012;61(12):2321-31. [DOI:10.1007/s00262-012-1301-x]
35. Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cell Int. 2012;2012. [DOI:10.1155/2012/184154]
36. Takahashi T, Kobori M, Shinmoto H, Tsushida T. Structure-activity relationships of flavonoids and the induction of granulocytic-or monocytic-differentiation in HL60 human myeloid leukemia cells. Biosci, Biotechnol Biochem. 1998;62(11):2199-204. [DOI:10.1271/bbb.62.2199]
37. Bestwick CS, Milne L, Duthie SJ. Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations. Chem Biol Interact. 2007;170(2):76-85. [DOI:10.1016/j.cbi.2007.07.002]
38. Kang HJ, Youn YK, Hong MK, Kim LS. Antiproliferation and redifferentiation in thyroid cancer cell lines by polyphenol phytochemicals. J Korean Med Sci. 2011;26(7):893-9. [DOI:10.3346/jkms.2011.26.7.893]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb