Volume 31, Issue 148 (September & October 2023)                   J Adv Med Biomed Res 2023, 31(148): 449-456 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemzadeh G, Kazemi Mehrjerdi H, Rajabioun M, Alamdaran S A, Mohebbi-Kalhori D, Jirofti N, et al . Function Assessment of a Fabricated Artificial Vascular Graft in Sheep Carotid Artery. J Adv Med Biomed Res 2023; 31 (148) :449-456
URL: http://journal.zums.ac.ir/article-1-6965-en.html
1- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2- Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3- Dept. of Radiology, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
4- Dept. of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
5- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
6- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran , taherir1@mums.ac.ir
Abstract:   (1440 Views)

Background and Objective: In the field of vascular surgery, the use of tissue-engineered vascular grafts is advancing and new synthetic tissues are being utilized to replace damaged blood vessels. These synthetic vessels, made through tissue engineering techniques, must mimic the shape and mechanical properties of native vessels. This study was performed to assess the function of an artificial vascular graft in an animal model.
Materials and Methods: The evaluation of artificial vessels was carried out on rat and sheep models. The artificial vascular scaffolds were made of Polyethylene terephthalate (PET), Polyurethane (PU), and Polycaprolactone (PCL) polymers. In the first phase, the fabricated scaffolds were implanted in rats and after 45 days, the grafts were removed and evaluated pathologically. In the second phase, the structures were implanted into the carotid arteries of sheep. Doppler ultrasound and angiography imaging were done to assess changes in carotid blood flow. Eleven months later, the artificial grafts and surrounding tissues were removed and evaluated pathologically.
Results: In the rat samples, no hypodermic infections, systemic inflammation, or fibrosis of adjacent tissues were observed. In the sheep samples, no local or systemic complications were reported one week after surgery. No complications were seen after 11 months in the two sheep that received PCL/PU grafts. In contrast, ultrasound evaluation showed thrombosis in the two other sheep that received PET/PU/PCL grafts.
Conclusion: This study shows that the implanted artificial vessel used in sheep carotid arteries has a favorable patency rate and satisfactory clinical results, and in terms of mechanical properties, it may be a good candidate for vascular replacement.

Full-Text [PDF 645 kb]   (587 Downloads) |   |   Full-Text (HTML)  (518 Views)  

This study shows that the implanted artificial vessel used in sheep carotid arteries has a favorable patency rate and satisfactory clinical results, and in terms of mechanical properties, it may be a good candidate for vascular replacement.


Type of Study: Original Article | Subject: Clinical medicine
Received: 2023/02/20 | Accepted: 2023/07/27 | Published: 2023/10/29

References
1. Madhavan K, Elliot W, Tan Y, Monnet E, Tan W. Performance of marrow stromal cell-seeded small-caliber multilayered vascular graft in a senescent sheep model. Biomed Mater. 2018; 13(5):055004. [DOI:10.1088/1748-605X/aac7a6] [PMID]
2. Simeone RM, Oster ME, Cassell CH, Armour BS, Gray DT, Honein MA. Pediatric inpatient hospital resource use for congenital heart defects. Birth Defects Res A Clin Molec Teratol. 2014; 100 (12):934-43. [DOI:10.1002/bdra.23262] [PMID] [PMCID]
3. Komasi S, Saeidi M. Presentation of new classification of perceived risk factors and etiologies of cardiovascular diseases. Arya Atheroscler. 2017; 12(6):295-6.
4. Abdulhannan P, Russell D, Homer-Vanniasinkam S. Peripheral arterial disease: a literature review. Br Med Bullet. 2012;104(1):21-39. [DOI:10.1093/bmb/lds027] [PMID]
5. Radke D, Jia W, Sharma D, et al. Tissue engineering at the blood‐contacting surface: A review of challenges and strategies in vascular graft development. Adv Healthcare Mater. 2018;7(15):1701461. [DOI:10.1002/adhm.201701461] [PMID] [PMCID]
6. Eghbalzadeh K, Guschlbauer M, Weber C, et al. Experimental studies for small diameter grafts in an in vivo sheep model techniques and pitfalls. Thoracic Cardiovasc Surg. 2021;69(07):649-659. [DOI:10.1055/s-0039-1687887] [PMID]
7. Spadaccio C, Rainer A, Barbato R, Trombetta M, Chello M, Meyns B. The long-term follow-up of large-diameter Dacron® vascular grafts in surgical practice: a review. J Cardiovasc Surg. 2019;60(4):501-13. [DOI:10.23736/S0021-9509.16.08061-7] [PMID]
8. Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thoracic Cardiovasc Surg. 2010;139(2):431-6. e2. [DOI:10.1016/j.jtcvs.2009.09.057] [PMID]
9. Schleimer K, Jalaie H, Afify M, et al. Sheep models for evaluation of novel patch and prosthesis material in vascular surgery: tips and tricks to avoid possible pitfalls. Acta Veterinaria Scandinavica. 2018;60(1):42. [DOI:10.1186/s13028-018-0397-1] [PMID] [PMCID]
10. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37(2):472-80. [DOI:10.1067/mva.2003.88] [PMID]
11. Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta biomaterialia. 2014;10(1):11-25. [DOI:10.1016/j.actbio.2013.08.022] [PMID] [PMCID]
12. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013;24(5):916-25. [DOI:10.1016/j.copbio.2013.05.005] [PMID] [PMCID]
13. Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev. 2016;22(1):68-100. [DOI:10.1089/ten.teb.2015.0100] [PMID] [PMCID]
14. Di Giammarco G, Pano M, Cirmeni S, Pelini P, Vitolla G, Di Mauro M. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thoracic Cardiovasc Surg. 2006;132(3):468-74. [DOI:10.1016/j.jtcvs.2006.02.014] [PMID]
15. Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater. 2018;13(5):055014. [DOI:10.1088/1748-605X/aad4b5] [PMID]
16. Anderson JH, Taggart NW, Edgerton SL, et al. Ultrasound guided percutaneous common carotid artery access in piglets for intracoronary stem cell infusion. Lab Anim. 2018;52(1):88-92. [DOI:10.1177/0023677217719923] [PMID]
17. Chlupáč J, Filova E, Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58(Suppl 2):S119-S39. [DOI:10.33549/physiolres.931918] [PMID]
18. Di Silvio L. Cellular response to biomaterials: Elsevier; 2008. [DOI:10.1533/9781845695477] [PMCID]
19. Benrashid E, McCoy CC, Youngwirth LM, et al. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods. 2016;99:13-9. [DOI:10.1016/j.ymeth.2015.07.014] [PMID]
20. Jiroft I, Mohebbi-Kalhori D, Kazemzadeh G, Taheri R. Evaluation of biocompatibility and reaction of the immune system of the rat in single and composite eectrospun nanofiber structures (PCL/PU) for tissue engineering Applications. J Cell Tissue. 2017;8(3):242-9.
21. Singh G, Cordero J, Wiles B, et al. Development of in vitro bioengineered vascular grafts for microsurgery and vascular surgery applications. Plast Reconstr Surg Glob Open. 2019;7(5):e2264. [DOI:10.1097/GOX.0000000000002264] [PMID] [PMCID]
22. Byrom MJ, Bannon PG, White GH, Ng MK. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010;52(1):176-95. [DOI:10.1016/j.jvs.2009.10.080] [PMID]
23. Kohler TR, Toleikis PM, Gravett DM, Avelar RL. Inhibition of neointimal hyperplasia in a sheep model of dialysis access failure with the bioabsorbable Vascular Wrap paclitaxel-eluting mesh. J Vas Surg. 2007;45(5):1029-38. e3. [DOI:10.1016/j.jvs.2007.01.057] [PMID]
24. Emmert MY, Schmitt BA, Loerakker S, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Translat Med. 2018;10(440):eaan4587. [DOI:10.1126/scitranslmed.aan4587] [PMID]
25. Van Kelle M, Oomen P, Janssen-van den Broek W, Lopata R, Loerakker S, Bouten C. Initial scaffold thickness affects the emergence of a geometrical and mechanical equilibrium in engineered cardiovascular tissues. J Royal Soc Interface. 2018;15(148):20180359. [DOI:10.1098/rsif.2018.0359] [PMID] [PMCID]
26. Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T. Mechanical responses of a compliant electrospun poly (L-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomater. 2006;27(8):1470-8. [DOI:10.1016/j.biomaterials.2005.08.029] [PMID]
27. Matsuda T, Ihara M, Inoguchi H, Kwon IK, Takamizawa K, Kidoaki S. Mechano‐active scaffold design of small‐diameter artificial graft made of electrospun segmented polyurethane fabrics. J Biomed Mater Res .2005;73(1):125-31. [DOI:10.1002/jbm.a.30260] [PMID]
28. Browning M, Dempsey D, Guiza V, et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta biomaterialia. 2012;8(3):1010-21. [DOI:10.1016/j.actbio.2011.11.015] [PMID]
29. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res. 2010;93(2):716-23. [DOI:10.1002/jbm.a.32584] [PMID]
30. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26(15):2527-36. [DOI:10.1016/j.biomaterials.2004.07.026] [PMID]
31. Taylor A, Fletcher J, Ao P. Inhibition of fibro‐intimal hyperplasia in a polytetrafluoroethylene vascular graft with standard heparin and low molecular weight heparin. Australia New Zealand J Surg. 1996;66(11):764-7. [DOI:10.1111/j.1445-2197.1996.tb00739.x] [PMID]
32. Simoni G, Galleano R, Civalleri D, et al. Pharmacological control of intimal hyperplasia in small diameter polytetrafluoroethylene grafts. An experimental study. Int Angiol.1996;15(1):50-6.
33. Fukunishi T, Ong CS, Yesantharao P, et al. Different degradation rates of nanofiber vascular grafts in small and large animal models. J Tissue Eng Regen Med. 2020;14(2):203-14. [DOI:10.1002/term.2977] [PMID]
34. Wang C, Li Z, Zhang L, Sun W, Zhou J. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020;85:1-6. [DOI:10.1016/j.medengphy.2020.09.007] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb