1. Madhavan K, Elliot W, Tan Y, Monnet E, Tan W. Performance of marrow stromal cell-seeded small-caliber multilayered vascular graft in a senescent sheep model. Biomed Mater. 2018; 13(5):055004. [
DOI:10.1088/1748-605X/aac7a6] [
PMID]
2. Simeone RM, Oster ME, Cassell CH, Armour BS, Gray DT, Honein MA. Pediatric inpatient hospital resource use for congenital heart defects. Birth Defects Res A Clin Molec Teratol. 2014; 100 (12):934-43. [
DOI:10.1002/bdra.23262] [
PMID] [
PMCID]
3. Komasi S, Saeidi M. Presentation of new classification of perceived risk factors and etiologies of cardiovascular diseases. Arya Atheroscler. 2017; 12(6):295-6.
4. Abdulhannan P, Russell D, Homer-Vanniasinkam S. Peripheral arterial disease: a literature review. Br Med Bullet. 2012;104(1):21-39. [
DOI:10.1093/bmb/lds027] [
PMID]
5. Radke D, Jia W, Sharma D, et al. Tissue engineering at the blood‐contacting surface: A review of challenges and strategies in vascular graft development. Adv Healthcare Mater. 2018;7(15):1701461. [
DOI:10.1002/adhm.201701461] [
PMID] [
PMCID]
6. Eghbalzadeh K, Guschlbauer M, Weber C, et al. Experimental studies for small diameter grafts in an in vivo sheep model techniques and pitfalls. Thoracic Cardiovasc Surg. 2021;69(07):649-659. [
DOI:10.1055/s-0039-1687887] [
PMID]
7. Spadaccio C, Rainer A, Barbato R, Trombetta M, Chello M, Meyns B. The long-term follow-up of large-diameter Dacron® vascular grafts in surgical practice: a review. J Cardiovasc Surg. 2019;60(4):501-13. [
DOI:10.23736/S0021-9509.16.08061-7] [
PMID]
8. Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thoracic Cardiovasc Surg. 2010;139(2):431-6. e2. [
DOI:10.1016/j.jtcvs.2009.09.057] [
PMID]
9. Schleimer K, Jalaie H, Afify M, et al. Sheep models for evaluation of novel patch and prosthesis material in vascular surgery: tips and tricks to avoid possible pitfalls. Acta Veterinaria Scandinavica. 2018;60(1):42. [
DOI:10.1186/s13028-018-0397-1] [
PMID] [
PMCID]
10. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg. 2003;37(2):472-80. [
DOI:10.1067/mva.2003.88] [
PMID]
11. Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta biomaterialia. 2014;10(1):11-25. [
DOI:10.1016/j.actbio.2013.08.022] [
PMID] [
PMCID]
12. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013;24(5):916-25. [
DOI:10.1016/j.copbio.2013.05.005] [
PMID] [
PMCID]
13. Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev. 2016;22(1):68-100. [
DOI:10.1089/ten.teb.2015.0100] [
PMID] [
PMCID]
14. Di Giammarco G, Pano M, Cirmeni S, Pelini P, Vitolla G, Di Mauro M. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thoracic Cardiovasc Surg. 2006;132(3):468-74. [
DOI:10.1016/j.jtcvs.2006.02.014] [
PMID]
15. Jirofti N, Mohebbi-Kalhori D, Samimi A, Hadjizadeh A, Kazemzadeh GH. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater. 2018;13(5):055014. [
DOI:10.1088/1748-605X/aad4b5] [
PMID]
16. Anderson JH, Taggart NW, Edgerton SL, et al. Ultrasound guided percutaneous common carotid artery access in piglets for intracoronary stem cell infusion. Lab Anim. 2018;52(1):88-92. [
DOI:10.1177/0023677217719923] [
PMID]
17. Chlupáč J, Filova E, Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58(Suppl 2):S119-S39. [
DOI:10.33549/physiolres.931918] [
PMID]
18. Di Silvio L. Cellular response to biomaterials: Elsevier; 2008. [
DOI:10.1533/9781845695477] [
PMCID]
19. Benrashid E, McCoy CC, Youngwirth LM, et al. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods. 2016;99:13-9. [
DOI:10.1016/j.ymeth.2015.07.014] [
PMID]
20. Jiroft I, Mohebbi-Kalhori D, Kazemzadeh G, Taheri R. Evaluation of biocompatibility and reaction of the immune system of the rat in single and composite eectrospun nanofiber structures (PCL/PU) for tissue engineering Applications. J Cell Tissue. 2017;8(3):242-9.
21. Singh G, Cordero J, Wiles B, et al. Development of in vitro bioengineered vascular grafts for microsurgery and vascular surgery applications. Plast Reconstr Surg Glob Open. 2019;7(5):e2264. [
DOI:10.1097/GOX.0000000000002264] [
PMID] [
PMCID]
22. Byrom MJ, Bannon PG, White GH, Ng MK. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010;52(1):176-95. [
DOI:10.1016/j.jvs.2009.10.080] [
PMID]
23. Kohler TR, Toleikis PM, Gravett DM, Avelar RL. Inhibition of neointimal hyperplasia in a sheep model of dialysis access failure with the bioabsorbable Vascular Wrap paclitaxel-eluting mesh. J Vas Surg. 2007;45(5):1029-38. e3. [
DOI:10.1016/j.jvs.2007.01.057] [
PMID]
24. Emmert MY, Schmitt BA, Loerakker S, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Translat Med. 2018;10(440):eaan4587. [
DOI:10.1126/scitranslmed.aan4587] [
PMID]
25. Van Kelle M, Oomen P, Janssen-van den Broek W, Lopata R, Loerakker S, Bouten C. Initial scaffold thickness affects the emergence of a geometrical and mechanical equilibrium in engineered cardiovascular tissues. J Royal Soc Interface. 2018;15(148):20180359. [
DOI:10.1098/rsif.2018.0359] [
PMID] [
PMCID]
26. Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T. Mechanical responses of a compliant electrospun poly (L-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomater. 2006;27(8):1470-8. [
DOI:10.1016/j.biomaterials.2005.08.029] [
PMID]
27. Matsuda T, Ihara M, Inoguchi H, Kwon IK, Takamizawa K, Kidoaki S. Mechano‐active scaffold design of small‐diameter artificial graft made of electrospun segmented polyurethane fabrics. J Biomed Mater Res .2005;73(1):125-31. [
DOI:10.1002/jbm.a.30260] [
PMID]
28. Browning M, Dempsey D, Guiza V, et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta biomaterialia. 2012;8(3):1010-21. [
DOI:10.1016/j.actbio.2011.11.015] [
PMID]
29. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res. 2010;93(2):716-23. [
DOI:10.1002/jbm.a.32584] [
PMID]
30. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26(15):2527-36. [
DOI:10.1016/j.biomaterials.2004.07.026] [
PMID]
31. Taylor A, Fletcher J, Ao P. Inhibition of fibro‐intimal hyperplasia in a polytetrafluoroethylene vascular graft with standard heparin and low molecular weight heparin. Australia New Zealand J Surg. 1996;66(11):764-7. [
DOI:10.1111/j.1445-2197.1996.tb00739.x] [
PMID]
32. Simoni G, Galleano R, Civalleri D, et al. Pharmacological control of intimal hyperplasia in small diameter polytetrafluoroethylene grafts. An experimental study. Int Angiol.1996;15(1):50-6.
33. Fukunishi T, Ong CS, Yesantharao P, et al. Different degradation rates of nanofiber vascular grafts in small and large animal models. J Tissue Eng Regen Med. 2020;14(2):203-14. [
DOI:10.1002/term.2977] [
PMID]
34. Wang C, Li Z, Zhang L, Sun W, Zhou J. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020;85:1-6. [
DOI:10.1016/j.medengphy.2020.09.007] [
PMID]