Volume 31, Issue 149 (November & December 2023)                   J Adv Med Biomed Res 2023, 31(149): 574-584 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Motallebzadeh Khanmiri J, Mousavi S H, Alizadeh S, Khani-Eshratabadi M. Microvesicles Derived from Human Placental Mesenchymal Stem Cells Induce Autophagy and Apoptosis in Acute Myeloid Leukemia. J Adv Med Biomed Res 2023; 31 (149) :574-584
URL: http://journal.zums.ac.ir/article-1-7072-en.html
1- Dept. of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
2- Dept. of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran , hmousavi@tums.ac.ir
Abstract:   (1343 Views)

Background and Objective: Acute myeloid leukemia (AML) has a complex course of treatment, including chemotherapy and bone marrow transplantation, which mostly results in drug resistance and recurrence. Therefore, alternative therapies have attracted the attention of researchers. Mesenchymal stem cells exert their paracrine effects through the secretion of multiple cytokines and vesicles. Recent findings suggest the possible antitumor properties of MSCs by the secretion of micro-vesicles, and consequent activation of cell death pathways in cancer cells. The present study evaluated how micro-vesicles from human placental mesenchymal stem cells affect the autophagy and apoptosis pathways in AML.
Materials and Methods: After isolation and culture, hPMSCs were identified through flow cytometry. The Bradford method was employed to determine the concentration of MVs. The properties of MVs were confirmed by transmission electron microscopy (TEM) and DLS. Next, the KG1 cell line was exposed to MVs at concentrations of 25, 50, and 100 μg/ml for 24 hours. Subsequently, apoptosis was assessed using an Annexin V-FITC/PI kit, and ROS activity was gauged through the utilization of H2DCFDA. The gene expression in the autophagy and apoptosis pathways was investigated by using the real-time PCR technique.
Results: After 24 hours of treatment, a rise in intracellular ROS accumulation and apoptosis was observed in all groups compared to the control group. The mean intracellular ROS accumulation at the concentrations of 25, 50, and 100 μg / ml of the samples and the control group was 62.21% (P<0.0002), 66.25% (P<0.0001), 62.55% (P<0.0001), and 26.1% (P<0.0001), respectively. The apoptosis indices at the concentrations of 25, 50, and 100 μg / ml of the samples were 62.6% (P<0.0002), 46.0% (P<0.0001), and 48.2% (P<0.0001), respectively. Furthermore, analyzing genes through RT-PCR indicated a considerable increase in the expression of autophagy-related and pro-apoptotic genes.
Conclusion: Our findings indicate that hPMSC-MVs induce Cell death pathways of autophagy and apoptosis in the KG1 cell lines. Additionally, hPMSC-MVs exhibited heightened impactful anti-proliferative and pro-apoptotic outcomes on KG1 cells in vitro.

Full-Text [PDF 1108 kb]   (333 Downloads) |   |   Full-Text (HTML)  (26 Views)  

Our findings indicate that hPMSC-MVs induce Cell death pathways of autophagy and apoptosis in the KG1 cell lines. Additionally, hPMSC-MVs exhibited heightened impactful anti-proliferative and pro-apoptotic outcomes on KG1 cells in vitro.


Type of Study: Original Article | Subject: Medical Biology
Received: 2023/06/26 | Accepted: 2023/09/29 | Published: 2024/01/29

References
1. Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood.2016;127(1):42-52. [DOI:10.1182/blood-2015-07-604512] [PMID]
2. Saeedi P, Halabian R, Fooladi AAI. A revealing review of mesenchymal stem cell therapy, clinical perspectives, and Modification strategies. Stem Cell Investig. 2019;6:34 [DOI:10.21037/sci.2019.08.11] [PMID] [PMCID]
3. Wang K. Effects of secretion factors from umbilical cord-derived mesenchymal stem cells (MSCs) on MSCs multi-differentiation potentials and underlying mechanisms [Dissertation]. The Chinese University of Hong Kong (Hong Kong); 2014.
4. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trend Pharmacol Sci. 2020;41(9):653-64. [DOI:10.1016/j.tips.2020.06.009] [PMID] [PMCID]
5. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107(9):1047-57. [DOI:10.1161/CIRCRESAHA.110.226456] [PMID]
6. Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053-67. [DOI:10.1681/ASN.2008070798] [PMID] [PMCID]
7. Wu S, Ju G-Q, Du T, Zhu Y-J, Liu G-H. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PloS one. 2013;8(4):e61366. [DOI:10.1371/journal.pone.0061366] [PMID] [PMCID]
8. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90(4):1383-435. [DOI:10.1152/physrev.00030.2009] [PMID]
9. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42. [DOI:10.1016/j.cell.2007.12.018] [PMID] [PMCID]
10. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23(16):2891-906. [DOI:10.1038/sj.onc.1207521] [PMID]
11. Tanaka Y, Kume S, Kitada M, et al. Autophagy as a therapeutic target in diabetic nephropathy. Exper Diabet Res. 2012;2012. [DOI:10.1155/2012/628978] [PMID] [PMCID]
12. Decaudin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 1997;57(1):62-7.
13. Sokolova V, Ludwig A-K, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy Colloids Surf B Biointerfaces. 2011;87(1):146-50. [DOI:10.1016/j.colsurfb.2011.05.013] [PMID]
14. Torsvik A, Bjerkvig R. Mesenchymal stem cell signaling in cancer progression. Cancer Treat Rev. 2013;39(2):180-8. [DOI:10.1016/j.ctrv.2012.03.005] [PMID]
15. Zhu W, Huang L, Li Y, et al. Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle. 2011;10(18):3198-207. [DOI:10.4161/cc.10.18.17638] [PMID]
16. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exper Med. 2006;203(5):1235-47. [DOI:10.1084/jem.20051921] [PMID] [PMCID]
17. Kang SG, Jeun SS, Lim JY, et al. Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Child Nerv Syst. 2008;24(3):293-302. [DOI:10.1007/s00381-007-0515-2] [PMID]
18. Ganta C, Chiyo D, Ayuzawa R, et al. Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res. 2009;69(5):1815-20. [DOI:10.1158/0008-5472.CAN-08-2750] [PMID]
19. Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev Rep. 2012;8(1):195-209. [DOI:10.1007/s12015-011-9289-8] [PMID]
20. Secchiero P, Zorzet S, Tripodo C, et al. Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin's lymphoma xenografts. PloS One. 2010;5(6):e11140. [DOI:10.1371/journal.pone.0011140] [PMID] [PMCID]
21. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20(9):1487-95. [DOI:10.1038/sj.leu.2404296] [PMID]
22. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 2007;9(6):654-9. [DOI:10.1038/ncb1596] [PMID]
23. Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575-81. [DOI:10.1016/j.ceb.2009.03.007] [PMID]
24. Camussi G, Deregibus M-C, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98.
25. Abbaszade Dibavar M, Soleimani M, Atashi A, Rassaei N, Amiri S. The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line. Artif Cells Nanomed Biotechnol. 2018;46(sup3):138-46. [DOI:10.1080/21691401.2018.1489821] [PMID]
26. Lefranc F, Facchini V, Kiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist. 2007;12(12):1395-403. [DOI:10.1634/theoncologist.12-12-1395] [PMID]
27. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-6. [DOI:10.1038/45257] [PMID]
28. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927-39. [DOI:10.1016/j.cell.2005.07.002] [PMID]
29. Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Molec Med. 2003;9(3):65-76. [DOI:10.1007/BF03402040] [PMID] [PMCID]
30. Chen Y, Gibson SB. Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy. 2008;4(2):246-8. [DOI:10.4161/auto.5432] [PMID]
31. Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid redox signal. 2009;11(4):777-90. [DOI:10.1089/ars.2008.2270] [PMID]
32. Kiššová I, Deffieu M, Samokhvalov V, et al. Lipid oxidation and autophagy in yeast. Free Radical Biol Med. 2006;41(11):1655-61. [DOI:10.1016/j.freeradbiomed.2006.08.012] [PMID]
33. Fan J, Ren D, Wang J, et al. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Disease. 2020;11(2):1-15. [DOI:10.1038/s41419-020-2317-3] [PMID] [PMCID]
34. Huwaikem MA, Kalamegam G, Alrefaei G, et al. Human Wharton's Jelly stem cell secretions inhibit human leukemic cell line K562 in vitro by inducing cell cycle arrest and apoptosis. Front Cell Develop Biol. 2021;9:614988. [DOI:10.3389/fcell.2021.614988] [PMID] [PMCID]
35. Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica. 2007;92(1):81-94. [DOI:10.3324/haematol.10279] [PMID]
36. Schimmer AD. Apoptosis in leukemia: from molecular pathways to targeted therapies. Best Pract Res Clin Haematol. 2008;21(1):5-11. [DOI:10.1016/j.beha.2007.11.002] [PMID]
37. Ji Y, Ma Y, Chen X, et al. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit the proliferation of leukemia cells. Oncol Rep. 2017;38(2):1013-20. PMid: 28627682 [DOI:10.3892/or.2017.5729] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb