Volume 31, Issue 149 (November & December 2023)                   J Adv Med Biomed Res 2023, 31(149): 585-593 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Safamanesh A, Oryan S, Ahmadi R, Parivar K. Cytotoxic Effect and Insulin-Like Characteristic of Peganum harmala: An in vitro Study. J Adv Med Biomed Res 2023; 31 (149) :585-593
URL: http://journal.zums.ac.ir/article-1-7152-en.html
1- Dept. of Animal Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran , safamaneshalieh@gmail.com
2- Dept. of Animal Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
3- Dept. of Animal Sciences, Faculty of Basic Sciences, Islamic Azad University of Qom, Qom, Iran
Abstract:   (1471 Views)

Background and Objective: Peganum harmala has emerged as a promising anti-diabetic medicine. There is no study regarding the impact of P. harmala concentration on the insulin secretion, C-peptide secretion, and glucose uptake. We investigated the effect of different concentrations of methanolic extracts of P. harmala seed and leaf on insulin and C-peptide secretion, and glucose uptake.
Materials and Methods: After the cell passaging, pancreatic carcinoma cell line (PANC-1) and HT1080 were treated with different concentrations of seed and leaf extract of P. harmala, harmine, and ghrelin agonists. The MTT was employed to assess the cell survival at the selective doses, and using a spectrophotometer, the absorbance was determined at 570 nm. After 72-h treatment, the insulin and C-peptide secretion were measured by ELISA. To measure the intracellular glucose concentrations after treating muscle carcinoma cell lines, glucose oxidase method was utilized.
Results: P. harmala seed and leaf extracts increased the secretion of insulin and C-peptide in a dose-dependent manner compared to ghrelin and harmine. These extracts increased the intracellular glucose concentration at high doses (150 and 1500 µg/ml for the seed and leaf extract, respectively) of HT1080 cell line. However, their high concentration was toxic and reduced the cell survival. The methanolic extracts of seed showed a higher insulin (17.5-fold) and C-peptide (7.8-fold) secretion compared to the leaf methanolic extracts.
Conclusion: Due to the presence of β-carbolines, the P. harmala seed extract has toxicity and affects insulin secretion and C-peptide uptake secretion at lower concentrations than those of leaf extract.

Full-Text [PDF 1498 kb]   (305 Downloads) |   |   Full-Text (HTML)  (49 Views)  

Due to the presence of β-carbolines, the P. harmala seed extract has toxicity and affects insulin secretion and C-peptide uptake secretion at lower concentrations than those of leaf extract.


Type of Study: Original Article | Subject: Pharmacology
Received: 2023/05/28 | Accepted: 2023/08/29 | Published: 2024/01/29

References
1. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2009;32(Supplt 1):S62-7. [DOI:10.2337/dc09-S062] [PMID] [PMCID]
2. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):19-39.
3. Okamura S, Hayashino Y, Kore-Eda S, Tsujii S. Localized amyloidosis at the site of repeated insulin injection in a patient with Type 2 diabetes. Diabetes Care. 2013;36(12):e200. [DOI:10.2337/dc13-1651] [PMID] [PMCID]
4. Church TJ, Haines ST. Treatment approach to patients with severe insulin resistance. Clin Diabetes. 2016;34(2):97-104. [DOI:10.2337/diaclin.34.2.97] [PMID] [PMCID]
5. Al-Awaida WJ, Sharab AS, Al-Ameer HJ, Ayoub NY. Effect of simulated microgravity on the antidiabetic properties of wheatgrass (Triticum aestivum) in streptozotocin-induced diabetic rats. NPJ Microgravity. 2020;6:2020. [DOI:10.1038/s41526-020-0096-x] [PMID] [PMCID]
6. Bahrami G, Miraghaee SS, Mohammadi B, et al. Molecular mechanism of the anti-diabetic activity of an identified oligosaccharide from Rosa canina. Res Pharm Sci. 2020;15(1):36-47. [DOI:10.4103/1735-5362.278713] [PMID] [PMCID]
7. Janahmadi Z, Nekooeian AA, Mozafari N. Hydroalcoholic extract of Allium eriophyllum leaves attenuates cardiac impairment in rats with simultaneous type 2 diabetes and renal hypertension. Res Pharm Sci. 2015;10(2):125-33. [DOI:10.1177/1934578X1501000232]
8. Venkatesan T, Sorimuthu Pillai S. Antidiabetic activity of gossypin, a pentahydroxyflavone glucoside, in streptozotocin-induced experimental diabetes in rats. J Diabetes. 2012 ;4(1):41-6. [DOI:10.1111/j.1753-0407.2011.00145.x] [PMID]
9. Riya MP, Antu KA, Pal S, et al. Antidiabetic property of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J Diabetes. 2015;7(4):548-61. [DOI:10.1111/1753-0407.12216] [PMID]
10. Chukwuma CI, Islam S, Amonsou E. A comparative study on the physicochemical, anti-oxidative, anti-hyperglycemic and anti-lipidemic properties of amadumbe (Colocasia esculenta) and okra (Abelmoschus esculentus) mucilage. J Food Biochem. 2018;42:1260. [DOI:10.1111/jfbc.12601]
11. Lavinya BU, Swaminathan M, Bhattacharya Y, Tandon S, Evan Prince S. In vivo anti-hyperglycemic potential of brahmi gritham and docking studies of its active components against protein kinase C and CD38. J Food Biochem. 2015;39:642-52. [DOI:10.1111/jfbc.12166]
12. Bahmani M, Rafieian-Kopaei M, Parsaei DP, Mohsenzadegan A. The anti-leech effect of Peganum harmala L. extract and some anti-parasite drugs on Limnatis nilotica. Afr J Microbiol Res. 2012;6(10):2586-90. [DOI:10.5897/AJMR12.201]
13. Niroomand M, Farzaei MH, Gholamreza A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. J Tradit Chin Med. 2015;35(1):104-9. [DOI:10.1016/S0254-6272(15)30016-9] [PMID]
14. Hemmateenejad B, Abbaspour A, Maghami H, Miri R, Panjehshain MR. Partial least squares-based multivariate spectral calibration method for simultaneous determination of beta-carboline derivatives in Peganum harmala seed extracts. Anal Chim Acta. 2006;575(2):290-9. [DOI:10.1016/j.aca.2006.05.093] [PMID]
15. Farzin D, Mansouri N. Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test. Eur Neuropsychopharmacol. 2006;16(5):324-8. [DOI:10.1016/j.euroneuro.2005.08.005] [PMID]
16. Jalili C, Akhshi N, Rashidi I, Ghanbari A. Harmine protects mercuric chloride kidney-induced injury by antioxidant activity in male mice: a biochemical and histological study. Res Pharm Sci. 2020;15(6):541-50. [DOI:10.4103/1735-5362.301339] [PMID] [PMCID]
17. Kadan S, Saad B, Sasson Y, Zaid H. Evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 translocation. Evid Based Complemen Alternat Med. 2013;2013:549345. [DOI:10.1155/2013/549345] [PMID] [PMCID]
18. Waki H, Park KW, Mitro N, et al. The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARgamma expression. Cell Metab. 2007;5(5):357-70. [DOI:10.1016/j.cmet.2007.03.010] [PMID]
19. Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Res Pharm Sci. 2018;13(4):324-31. [DOI:10.4103/1735-5362.235159] [PMID] [PMCID]
20. Ding Y, He J, Huang J, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol. 2019;54(6):1995-2004. [DOI:10.3892/ijo.2019.4777] [PMID] [PMCID]
21. Kajbaf F, Oryan S, Ahmadi R, Eidi A. Harmine. A natural β-carboline alkaloid, ameliorates apoptosis by decreasing the expression of caspase-3 in the kidney of diabetic male Wistar rats. Gen Rep. 2020;21:100863. [DOI:10.1016/j.genrep.2020.100863]
22. Ghasemiyeh P, Vazin A, Zand F, Azadi A, Karimzadeh I, Mohammadi-Samani S. A simple and validated HPLC method for vancomycin assay in plasma samples: the necessity of TDM center development in Southern Iran. Res Pharm Sci. 2020;15(6):529-40. [DOI:10.4103/1735-5362.301337] [PMID] [PMCID]
23. Porbarkhordari E, Foladsaz K, Hoseini SH, Danafar H, Kheiri Manjilli HR, Ramazani A. The hypoglycemic effects of an ethanol extract of peganum harmala in Streptozotocin-induced diabetic rats. Iran J Pharm Sci. 2014;10(3):47-54.
24. 25. Kotsis T, Nastos C, Stamatis K, et al.Insulin metabolism and assessment of hepatic insulin extraction during liver regeneration. A study in a rat model. J Invest Surg. 2020;33(1):69-76.
25. Kotsis T, Nastos C, Stamatis K, et al.Insulin metabolism and assessment of hepatic insulin extraction during liver regeneration. A study in a rat model. J Invest Surg. 2020;33(1):69-76. [DOI:10.1080/08941939.2018.1472317] [PMID]
26. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21-34. [DOI:10.1111/j.1467-789X.2006.00270.x] [PMID]
27. Zhu S, Larkin D, Lu S, et al.Monitoring C-peptide storage and secretion in islet β-cells in vitro and in vivo. Diabetes. 2016;65(3):699-709. [DOI:10.2337/db15-1264] [PMID] [PMCID]
28. Buss J, Havel PJ, Epel E, Lin J, Blackburn E, Daubenmier J. Associations of ghrelin with eating behaviors, stress, metabolic factors, and telomere length among overweight and obese women: preliminary evidence of attenuated ghrelin effects in obesity? Appetite. 2014;76:84-94. [DOI:10.1016/j.appet.2014.01.011] [PMID] [PMCID]
29. Meyer C. Final answer: ghrelin can suppress insulin secretion in humans, but is it clinically relevant? Diabetes. 2010;59(11):2726-8. [DOI:10.2337/db10-1088] [PMID] [PMCID]
30. Cantley J, Ashcroft FM. Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol. 2015;13:33. [DOI:10.1186/s12915-015-0140-6] [PMID] [PMCID]
31. Mahdinezhad MR, Hooshmand S, Soukhtanloo M, Jamshidi ST, Ehtiati S, Ghorbani A. Protective effects of a standardized extract of Iris germanica on pancreas and liver in streptozotocin-induced diabetic rats. Res Pharm Sci. 2021;16(1):71-8. [DOI:10.4103/1735-5362.305190] [PMID] [PMCID]
32. Karnieli E, Armoni M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. Am J Physiol Endocrinol Metab. 2008;295(1):E38-45. [DOI:10.1152/ajpendo.90306.2008] [PMID]
33. Pereira RM, de Moura LP, Munoz VR, Gasper RS, Pauli JR. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. Motriz: Revista de Educação Física. 2017; 23. [DOI:10.1590/s1980-6574201700si0004]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb