Volume 32, Issue 154 (September & October 2024)                   J Adv Med Biomed Res 2024, 32(154): 370-377 | Back to browse issues page

Ethics code: IR.BUMS.REC.1396.130


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasseri S, Vafaeie F, Miri-Moghaddam E. Genetic Polymorphism of 21 Autosomal Short Tandem Repeat Markers in South Khorasan Province of Iran. J Adv Med Biomed Res 2024; 32 (154) :370-377
URL: http://journal.zums.ac.ir/article-1-7457-en.html
1- Department of Molecular Medicine, Cellular & Molecular Research Center, School of Medicine, Birjand University of Medical Sciences, South Khorasan, Birjand, Iran
2- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
3- Department of Molecular Medicine, Faculty of Medicine, and Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran , miri4@bums.ac.ir
Abstract:   (239 Views)
Background: Short tandem repeats (STR) are highly polymorphic genetic markers widely used in human identification. This study aimed to investigate the genetic characteristics of 21 autosomal STR loci in individuals from eastern Iran.
Methods: Sixty healthy volunteers from twenty families provided buccal samples for analysis using the PowerPlex® 21 System. Various genetic and forensic parameters, including polymorphic information content, random matching probability, allelic discrimination power, paternity index, and exclusion power, were assessed.
Results: Five STR markers (D1S1656, D6S1043, D12S391, Penta D, and Penta E) were identified as prevalent in the eastern Iranian population, enabling successful parentage verification. All loci were in Hardy-Weinberg equilibrium, with a total of 178 alleles detected. The Penta E locus had the highest number of alleles, while TPOX had the most frequent allele. D12S391 exhibited the highest heterozygosity percentage (96.7%) among the loci analyzed.
Conclusion: The study confirmed the high informativeness of the 20 autosomal STR markers in individuals from eastern Iran, supporting previous findings. These results contribute to the genetic characterization of the eastern Iranian population and highlight the utility of these markers in forensic applications.

 
Full-Text [PDF 1149 kb]   (80 Downloads)    
Type of Study: Original Research Article | Subject: Life Science
Received: 2024/03/13 | Accepted: 2025/01/2 | Published: 2024/10/19

References
1. Sherif H, El-Alfy AFAE-H. Paternity testing and forensic DNA typing by multiplex STR analysis using ABI PRISM 310 Genetic Analyzer. J Genet Engineer Biotechnol. 2012; 10: 12. [DOI:10.1016/j.jgeb.2012.05.001]
2. Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG. Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Foren Sci Int. 1999; 100(1-2): 1-16. [DOI:10.1016/S0379-0738(98)00199-6] [PMID]
3. Murat P, Guilbaud G, Sale JE. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Gen Biol. 2020; 21: 1-26. [DOI:10.1186/s13059-020-02124-x] [PMID] [PMCID]
4. Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Rev Genet. 2004; 5(6): 435-45. [DOI:10.1038/nrg1348] [PMID]
5. Hares DR. Selection and implementation of expanded CODIS core loci in the United States. Foren Sci Int Genet. 2015; 17: 33-4. [DOI:10.1016/j.fsigen.2015.03.006] [PMID]
6. Moretti TR, Moreno LI, Smerick JB, Pignone ML, Hizon R, Buckleton JS, et al. Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Foren Sci Int Genet. 2016; 25: 175-81. [DOI:10.1016/j.fsigen.2016.07.022] [PMID]
7. El-Alfy SH, Abd El-Hafez AF. Paternity testing and forensic DNA typing by multiplex STR analysis using ABI PRISM 310 Genetic Analyzer. J Genet Engineer Biotechnol. 2012; 10(1): 101-12. [DOI:10.1016/j.jgeb.2012.05.001]
8. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechnique. 1991; 10(4): 506-13.
9. Rashid MNA, Mahat NA, Khan HO, Wahab RA, Maarof H, Ismail D, et al. Population data of 21 autosomal STR loci in Malaysian populations for human identification. Int J Legal Med. 2020; 134(5): 1675-8. [DOI:10.1007/s00414-020-02279-z] [PMID]
10. Tillmar AO, Kling D, Butler JM, Parson W, Prinz M, Schneider PM, et al. DNA commission of the international society for forensic genetics (ISFG): Guidelines on the use of X-STRs in kinship analysis. Foren Sci Int. 2017; 29: 269-75. [DOI:10.1016/j.fsigen.2017.05.005] [PMID]
11. Davoodbeygi M, Zarekarizi S, Akbari M. Allele frequency of 15 autosomal STR loci in Kurdish ethnics inhabitants of Kermanshah Pprovince. J Police Med. 2015; 4(3): 209-16.
12. Heydari D, Ghaffari S, Chahardouli B, Alimoghaddam K, Ghavamzadeh A. The development of multiplex PCR-STR system for the analysis of genetic data of the Iranian population. Sci J Iran Blood Transfus Organ. 2015; 11(4): 306-17.
13. Lahmi R, VALIAN S. Genetic variation of informative short tandem repeat (STR) loci in an Iranian population. 2009.
14. Shepard E, Herrera R. Iranian STR variation at the fringes of biogeographical demarcation. Foren Sci Int. 2006; 158(2-3): 140-8. [DOI:10.1016/j.forsciint.2005.05.012] [PMID]
15. Valian S, Moeini H. Genotyping of five polymorphic STR loci in Iranian province of Isfahan. 2006.
16. Panneerchelvam S, Norazmi M. Forensic DNA profiling and database. Malaysian J Med Sci. 2003; 10(2): 20.
17. van Asch B, Pinheiro R, Pereira R, Alves C, Pereira V, Pereira F, et al. A framework for the development of STR genotyping in domestic animal species: Characterization and population study of 12 canine X‐chromosome loci. Electrophoresis. 2010; 31(2): 303-8. [DOI:10.1002/elps.200900389] [PMID]
18. Haidar M, Abbas FA, Alsaleh H, Haddrill PR. Population genetics and forensic utility of 23 autosomal PowerPlex Fusion 6C STR loci in the Kuwaiti population. Sci Rep. 2021; 11(1): 1-11. [DOI:10.1038/s41598-021-81425-y] [PMID] [PMCID]
19. Nassiri M, Ghovvati S, Mirhoseini SZ, Javadmanesh A, Mahdavi M, Alipour A, et al. Investigation of allelic frequency and forensic genetics parameter for 10 STR loci in Arab and Kurd ethnics of Iran. 2018.
20. Lareu M, Pestoni C, Carracedo A, Schürenkamp M, Rand S, Brinkmann B. A highly variable STR at the D12S391 locus. Int J Legal Med. 1996; 109(3): 134-8. [DOI:10.1007/BF01369673] [PMID]
21. Stephenson FH. Calculations for molecular biology and biotechnology. Third Edition ed: Academic press; 2016.
22. Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun. 2021; 9(1): 98. [DOI:10.1186/s40478-021-01201-x] [PMID] [PMCID]
23. Osman AE, Alsafar H, Tay GK, Theyab J, Mubasher M, Sheikh NE-E, et al. Autosomal short tandem repeat (STR) variation based on 15 loci in a population from the Central Region (Riyadh Province) of Saudi Arabia. 2015. [DOI:10.4172/2157-7145.1000267]
24. Al-Snan NR, Messaoudi SA, Mansoor LA, Bakhiet M. Population genetic analysis of 12 X-chromosomal Sshort tandem repeats in a Bahraini population sample. Foren Genom. 2021; 1(1): 27-37. [DOI:10.1089/forensic.2020.0003]
25. Falcone G, La Marca A. Population data of D6S1043, penta D and penta E loci in Calabria (South of Italy). J Basic Appl Sci. 2020; 16: 74-8. [DOI:10.29169/1927-5129.2020.16.10]
26. Budowle B, Shea B, Niezgoda S, Chakraborty R. CODIS STR loci data from 41 sample populations. J Foren Sci. 2001; 46(3): 453-89. [DOI:10.1520/JFS14996J]
27. Wang Y, Gao A, Dong Z, Wang D. Analysis of five rare alleles at the STR loci D1S1656, D12S391, D13S317, Penta D, and D2S441. Electrophoresis. 2023; 44(9-10): 818-24. [DOI:10.1002/elps.202200216] [PMID]
28. Goodwin W, Ballard D, Simpson K, Thacker C, Court DS, Gow J, editors. Case study: paternity testing-when 21 loci are not enough. Int Congress Series; 2004: Elsevier. [DOI:10.1016/S0531-5131(03)01724-2]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb