1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. [
DOI:10.1056/NEJMoa2001017] [
PMID] [
PMCID]
2. Ali AM, Tofiq AM, Rostam HM, Ali KM, Tawfeeq HM. Disease severity and efficacy of homologous vaccination among patients infected with SARS-CoV-2 Delta or Omicron VOCs, compared to unvaccinated using main biomarkers. J Med Virol. 2022;94(12):5867-76. [
DOI:10.1002/jmv.28098] [
PMID] [
PMCID]
3. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020;52(6):910-41. [
DOI:10.1016/j.immuni.2020.05.002] [
PMID] [
PMCID]
4. Webb Hooper M, Napoles AM, Perez-Stable EJ. COVID-19 and Racial/Ethnic Disparities. JAMA. 2020;323(24):2466-7. [
DOI:10.1001/jama.2020.8598] [
PMID] [
PMCID]
5. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. [
DOI:10.1016/S0140-6736(20)30628-0] [
PMID] [
PMCID]
6. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. [
DOI:10.1016/S2213-2600(20)30076-X] [
PMID] [
PMCID]
7. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012-5. [
DOI:10.1126/science.abb7314] [
PMID] [
PMCID]
8. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-4. [
DOI:10.1126/science.abb8925] [
PMID]
9. Lei J, Li J, Li X, Qi X. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology. 2020;295(1):18. [
DOI:10.1148/radiol.2020200236] [
PMID] [
PMCID]
10. Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev. 2020;296(1):205-19. [
DOI:10.1111/imr.12897] [
PMID] [
PMCID]
11. Ali HN, Ali KM, Rostam HM, Ali AM, Tawfeeq HM, Fatah MH, et al. Clinical laboratory parameters and comorbidities associated with severity of coronavirus disease 2019 (COVID-19) in Kurdistan Region of Iraq. Pract Lab Med. 2022;31:e00294. [
DOI:10.1016/j.plabm.2022.e00294] [
PMID] [
PMCID]
12. Velavan TP, Pallerla SR, Ruter J, Augustin Y, Kremsner PG, Krishna S, et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine. 2021;72:103629. [
DOI:10.1016/j.ebiom.2021.103629] [
PMID] [
PMCID]
13. Yu K, Wang J, Li H, Wang W. IFITM3 rs12252 polymorphism and coronavirus disease 2019 severity: A meta‑analysis. Exp Ther Med. 2023;25(4):158. [
DOI:10.3892/etm.2023.11857] [
PMID] [
PMCID]
14. Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene. 2022;844:146790. [
DOI:10.1016/j.gene.2022.146790] [
PMID] [
PMCID]
15. Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFalpha genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med. 2023;23(7):3251-64. [
DOI:10.1007/s10238-023-01038-9] [
PMID] [
PMCID]
16. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 2008;4(3):e1000017. [
DOI:10.1371/journal.ppat.1000017] [
PMID] [
PMCID]
17. Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T, Falcone V, et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol. 2010;84(11):5670-7. [
DOI:10.1128/JVI.00272-10] [
PMID] [
PMCID]
18. Baldridge MT, Lee S, Brown JJ, McAllister N, Urbanek K, Dermody TS, et al. Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus. J Virol. 2017;91(7):e02079. [
DOI:10.1128/JVI.02079-16] [
PMID] [
PMCID]
19. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4(1):69-77. [
DOI:10.1038/ni875] [
PMID]
20. Sharafi H, Alavian SM, Behnava B, Pouryasin A, Keshvari M. The Impact of IFNL4 rs12979860 Polymorphism on Spontaneous Clearance of Hepatitis C; A Case-Control Study. Hepat Mon. 2014;14(10):e22649. [
DOI:10.5812/hepatmon.22649]
21. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105-9. [
DOI:10.1038/ng.449] [
PMID]
22. Lapinski TW, Pogorzelska J, Kowalczuk O, Niklinski J, Flisiak R. SNP RS12979860 related spontaneous clearance of hepatitis c virus infection in HCV/HIV-1 coinfected patients. Przegl Epidemiol. 2013;67(3):407-9, 517-9.
23. Farzanegan Gharabolagh A, Bamdad T, Hedayati M, Dehghan Manshadi SA. The Synergistic Effect of Fluvastatin and IFN-lambda on Peripheral Blood Mononuclear Cells of Chronic Hepatitis C Virus (HCV) Patients with IL-28B rs12979860 CC Genotype. Iran J Allergy Asthma Immunol. 2019;18(5):533-42. [
DOI:10.18502/ijaai.v18i5.1923] [
PMID]
24. Saponi-Cortes JMR, Rivas MD, Calle-Alonso F, Sanchez JF, Costo A, Martin C, et al. IFNL4 genetic variant can predispose to COVID-19. Sci Rep. 2021;11(1):21185. [
DOI:10.1038/s41598-021-00747-z] [
PMID] [
PMCID]
25. Rahimi P, Tarharoudi R, Rahimpour A, Mosayebi Amroabadi J, Ahmadi I, Anvari E, et al. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol J. 2021;18(1):221. [
DOI:10.1186/s12985-021-01692-z] [
PMID] [
PMCID]
26. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45(2):164-71. [
DOI:10.1038/ng.2521] [
PMID] [
PMCID]
27. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'Huigin C, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461(7265):798-801. [
DOI:10.1038/nature08463] [
PMID] [
PMCID]
28. Rugwizangoga B, Andersson ME, Kabayiza JC, Nilsson MS, Armannsdottir B, Aurelius J, et al. IFNL4 Genotypes Predict Clearance of RNA Viruses in Rwandan Children With Upper Respiratory Tract Infections. Front Cell Infect Microbiol. 2019;4(9):340. [
DOI:10.3389/fcimb.2019.00340] [
PMID] [
PMCID]
29. Amodio E, Pipitone RM, Grimaudo S, Immordino P, Maida CM, Prestileo T, et al. SARS-CoV-2 Viral Load, IFNlambda Polymorphisms and the Course of COVID-19: An Observational Study. J Clin Med. 2020;9(10):3315. [
DOI:10.3390/jcm9103315] [
PMID] [
PMCID]
30. Zhang Y, Qin L, Zhao Y, Zhang P, Xu B, Li K, et al. Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated With Disease Severity in Coronavirus Disease 2019. J Infect Dis. 2020;222(1):34-7. [
DOI:10.1093/infdis/jiaa224] [
PMID] [
PMCID]
31. Alghamdi J, Alaamery M, Barhoumi T, Rashid M, Alajmi H, Aljasser N, et al. Interferon-induced transmembrane protein-3 genetic variant rs12252 is associated with COVID-19 mortality. Genomics. 2021;113(4):1733-41. [
DOI:10.1016/j.ygeno.2021.04.002] [
PMID] [
PMCID]
32. Cuesta-Llavona E, Albaiceta GM, Garcia-Clemente M, Duarte-Herrera ID, Amado-Rodriguez L, Hermida-Valverde T, et al. Association between the interferon-induced transmembrane protein 3 gene (IFITM3) rs34481144 / rs12252 haplotypes and COVID-19. Curr Res Virol Sci. 2021;2:100016. [
DOI:10.1016/j.crviro.2021.100016] [
PMID] [
PMCID]
33. Gomez J, Albaiceta GM, Cuesta-Llavona E, Garcia-Clemente M, Lopez-Larrea C, Amado-Rodriguez L, et al. The Interferon-induced transmembrane protein 3 gene (IFITM3) rs12252 C variant is associated with COVID-19. Cytokine. 2021;137:155354. [
DOI:10.1016/j.cyto.2020.155354] [
PMID]
34. Schonfelder K, Breuckmann K, Elsner C, Dittmer U, Fistera D, Herbstreit F, et al. The influence of IFITM3 polymorphisms on susceptibility to SARS-CoV-2 infection and severity of COVID-19. Cytokine. 2021;142:155492. [
DOI:10.1016/j.cyto.2021.155492] [
PMID] [
PMCID]
35. Mulla S, Molla MMA, Ahmed SMA, Akhtaruzzaman AKM, Saleh AA, Anwar S. Association of interferon gamma inducible protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-1 alpha, interleukin-6, and rs12252 single nucleotide polymorphism of interferon-induced transmembrane protein-3 gene with the severity of COVID-19 infection. Egypt J Intern Med. 2022;34(1):53. [
DOI:10.1186/s43162-022-00141-9] [
PMID] [
PMCID]
36. Ahmadi I, Afifipour A, Sakhaee F, Zamani MS, Mirzaei Gheinari F, Anvari E, et al. Impact of interferon-induced transmembrane protein 3 gene rs12252 polymorphism on COVID-19 mortality. Cytokine. 2022;157:155957. [
DOI:10.1016/j.cyto.2022.155957] [
PMID] [
PMCID]
37. Zahid W, Farooqui N, Zahid N, Ahmed K, Anwar MF, Rizwan-Ul-Hasan S, et al. Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infect Drug Resist. 2023;16:6619-28. [
DOI:10.2147/IDR.S422095] [
PMID] [
PMCID]
38. Agwa SHA, Kamel MM, Elghazaly H, Abd Elsamee AM, Hafez H, Girgis SA, et al. Association between Interferon-Lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 Variant Polymorphisms with the Course and Outcome of SARS-CoV-2 Patients. Genes (Basel). 2021;12(6):830. [
DOI:10.3390/genes12060830] [
PMID] [
PMCID]